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Why Model Sea Ice?

® Forcasting: shipping, safety and environmental
remediation.

Where is the ice?
How fast is it moving?
Where is it going?

e Climatology: global climate models
How thick is the ice?

What is its extent?
How much is new?

® |ce deformation provides the mechanical input
to the ice thickness distribution.

Deborah Sulsky, JPL Presentation August 15, 2007



Why a new ice model?

The viscous-plastic model is an isotropic model based on a
100 km scale in which it was assumed that cracks, ridges
and leads were randomly distributed.

e Satellite images show large ice deformation events
occurring in long-lasting linear features that appear to
correspond to displacement (or velocity)
discontinuities in the deformation field due to leads

* Most 10 km Lagrangian cells do not have permanent

deformation during the year
(R. Kwok, J. Geophys. Res., Vol. 111, No. C11, C11S22, 2006)

For thick first-year ice and multi-year ice, we assume most

deformation occurs due to discontinuities in the
Jo'splacement field.
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Equations of Motion
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Simulation Parameters

symbol name value
0 sea ice density (mass/vol) 917.0
h sea ice thickness 3.0
i coriolis parameter 1.46 x 10~*
% air drag coefficient 0.0012
Oa air density 1.20
Va wind velocity from data
a air turning angle 0.50
Co sea water drag coefficient 0.00536
Ow sea water density 1026.0
p sea water turning angle 0.0
Vu sea water velocity from data
G (linearized) elastic shear modulus 3.6765 x 10°
K (linearized) elastic bulk modulus  11.905 x 10°
es out of plane vector 0,0,
o Ice stress ===
ice velocity ———

oy
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Flements of an MPM Simulation

Material
Points
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MPM Computational Cycle

Step 1: Interpolate material-point data to the mesh
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MPM Computational Cycle

Step 2: Solve equations of motion in an updated
Lagrangian frame on the mesh

}\\
| 1| /u
e

m;a; = {;

v; —Vv; +Ata;
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MPM Computational Cycle

Step 3: Update the material-points based on the mesh

solution
\ \d‘ B Vp —Vp+AL) a;N;(x))
A i
/\0 7\0 ¢ Fp‘_prpy
2 &2 & fp=I+AtZViVNi(Xp)
i

A
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MPM Computational Cycle

Step 4: Redefine the background mesh if desired
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Features of MPM

Dual description of the continuum: material points and background
computational mesh

The convective phase of the algorithm is performed by Lagrangian
material points which carry position, mass, velocity...

The interaction between material points is solved using a finite
element or finite difference discretization on a mesh (cost is linear in
the number of material points)

Information is transferred between the material points and the mesh
by interpolation (only changes are interpolated, keeping numerical
dissipation relatively small)

Material points move in a continuous velocity field providing a
natural no-slip contact algorithm

Can use any constitutive model

Deborah Sulsky, JPL Presentation August 15, 2007



Rotation Test

%+V Vhi=0 dh—O
ot - dr

h(x,y,0) = hy(x,y) of  hx, ¥,0) = hy(x, y)
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Finite Difterence Results

(a) exact (b) MPDATA (c) remapping (d) upwind

Modeling Sea Ice Transport Using Incremental Remapping:
Lipscomb & Hunke (2004) Monthly Weather Review 132:1341-1354
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MPM Rotation Test

Final Configuration

Sulsky, D., H. Schreyer, K. Peterson, R. Kwok, M. Coon
(2007), Using the Material-Point-Method to Model Sea
lce Dynamics, J. of Geophys. Res., 112, C02590, doi:
10.1029/2005)C003329.
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Convergent Flow Test

oa
—+V-:(av) =0

0t oh

D R — +v-Vh=0
— +V-(vv) =0 ot

0t h=vla

Let v(x,y)=-(x,0)

45 [
Exact Solution: a(x,t) = e ap(xe’)
v(X, ) = etl/() (xeh)
haks, ) = ho(xet)
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Convergent Flow Test

(a) Initial area, volume (b) Initial thickness

12 e

Bew e == #30

, | for |x]| =0.75
ap(x) =<1 for0<x<1 ho(x) =

0.2 otherwise

0 otherwise

Modeling Sea Ice Transport Using Incremental Remapping:
m Lipscomb & Hunke (2004) Monthly Weather Review 132:1341-1354
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Convergent Flow Test

Ax=0.05
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Finite Difterence Results

(a) Upwind area, volume (b) Upwind thickness
— — YT —

(a) Initial area, volume
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(c) MPDATA area, volume (d) MPDATA thickness

Ax=0.05 N '

Modeling Sea Ice
Transport Using
Incremental Remapping:
Lipscomb & Hunke (2004)
Monthly Weather Review
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MPM Results Ax=0.05




MPM Results Ax=0.025




MPM Results Ax=0.0125




Goal

A numerically efficient sea ice model that includes
observed features such as leads and ridges and uses
available satellite data for verification

http:www.jpl.nasa.gov/pictures/seaice
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Constitutive Model tor Sea Ice

Initial Focus: Prediction and appearance of leads

Proposed Approach: Elastic-Decohesive Model
® Model intact ice as an elastic material

e Model leads as a discontinuity (decohesion)

(Ice is quasibrittle so we can borrow from
models of concrete and rock)
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Elastic-Decohesive Model

Similar to elastic-plastic model:

e damage surface ~ yield surface

e damage surface gives stress state at which a
lead begins

e damage surface gives orientation of lead

e damage surface constructed from empirical
data

Capture essential properties:

® correct energy dissipation
® correct peak stress
e keep method numerical tractable
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Elastic-Decohesive Model

Components:
e |[nitiate Failure
e Determine lead orientation

e Evolve failure (create an open lead)

Failure surface informed by empirical data
(Schulson) and in situ data (Coon)
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Laboratory Data
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Schulson, E. M. (2001) Brittle failure of ice,
Engng. Fract Mech., 68:1879-1887
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Stress at Failure - Failure Initiation

The failure envelope
In stress space that
describes initiation
of failure is

F(o)=0

What is F ¢

Schulson, E. Brittle Failure of Ice.
Engineering Fracture
Mechanics, 68:1839-1887, 2001.

d
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Rankine Criterion
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Brittle Decohesion Criterion

By— —— , — 1
T”f fc2
- x, ifx=0
N =
0, if x<O

f. = compressive strength

—0tt——> I «— 0 ¢
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Tresca Criterion

n

mﬂl

Deborah Sulsky, JPL Presentation August 15, 2007



Stress at Failure - Failure Initiation - Orientation

Schreyer, 1day, M. Coon,
Elastic- ollge%:lt esnl];e Co\/rg)sul'uﬁJ tide | %Ieflf

Geophys. Re5N§18; Eﬁ%@%‘ed%‘i 10 6"1‘57’266‘%5 C003334.
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Failure Evolution

As decohesion occurs material becomes weaker.

lu] = u,n+ ut

U
— X1 fn:<1_u_0>
/4
T =)
tnf fc
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Failure Evolution

— st Failure Surf.
2nd Failure Surf.
= Nominal Surf.
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Initialized Weak Plane
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RGPS

Radarsat Geophysical Processor System
at JPL

Seasonal
lce
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Divergence
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Problem Set Up

Simulate 16 days in Feb/Mar, 2004

ice (cyan, day 54.5) & land (blue) & sea (brown)

Set up:

® 10 km square
background grid

® 4 material points per
element

® rigid material points for
land

® include wind, ocean, and
Coriolis forces

® Right, top, bottom
boundary conditions from
RGPS displacements
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Initialization

Use a kinematic analysis of satellite data to
find existing leads

Crack Orientations, days:536-547, u0=0.2km

=1 MPa
=0.36
Tnf = 25 KPa
Tsf = 15 KPa
f'c =125 KPa
uo =400 m

ST
RSN
RN

Sm =

Day 54 (Feb. 23
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Fracture Patterns in the Beaufort

day 55

Observation Simulation
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Fracture Patterns in the Beaufort
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Fracture Patterns in the Beaufort
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Fracture Patterns in the Beaufort
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Fracture Patterns in the Beaufort

day 55

decOpening, days:546-557 PM decOpening, da 0=0.4

-2200 -2100 -2000 -1900 -1800 -1700 -1600 00 00 00 000 900 800 —-1700 —1600

Observation Simulation
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Fracture Patterns in the Beaufort

day 60

decOpening, days:596-607 PM decOpening, day60, u0=0.4
2 pos
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Observation Simulation
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Fracture Patterns in the Beaufort

day 65

decOpening, days:646-657 PM decOpening, day6 0=0.4
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Observation Simulation
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Fracture Patterns in the Beaufort
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Observation Simulation
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Features of MPM:

e Handles advection naturally

e Supports large deformations and fracture

Features of elastic-decohesive model:

e Stress state at which leads initiate
e Orientation of lead at initiation

¢ Evolution of lead (softening)

® Existing material weakness

e Implemented in plasticity framework
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