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Conclusion — ongoing work:
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- modeled freshwater fluxes (59 mSv) are higher compared to previous estimates
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 possible overestimation of FWF at Amundsen Bellingshausen Sea ice shelves ice cover by 2 months. This relationship is

less prominent in the eastern part of the
\1 Ross Sea. The maximum of freezing in the

A\ western part is related to the
summer and red
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 Longer time series of melt

Fig. 10: Time series of melt rates and thorough model
{ rate (dh/dt) of Larsen C area. evaluation necessary.
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- revision of bathymetry and ice shelf thickness in the Amundsen )\‘ i
Bellingshausen Sea (P. Holland, pers. Comm., 2008) ’(
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Fig. 11: Satellite Image of
Larsen B. Ice Front retreat from
1998 to 2002 is shown as

- Implementation of ice shelf configuratidr'{ In the global model domain of
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coloured lines conditioning for break up. ECCO2 for better representation of high latitude processes 1 N T N )
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