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Evaluation of Indonesian-throughflow (ITF) transport
estimated by ocean data assimilation (ODA) products using

INSTANT observations

Tong Lee

Jet propulsion Laboratory, California Institute of Technology

Material extracted from Lee et al. (2009), submitted to ITF Special Issue in Dyn.
Atmos. & Ocean



Mooring locations of the INSTANT Program
(2004- 2006)

* ITF important to global ocean circulation &
climate variability (e.g., Hirst & Godfrey 1993,
Lee et al. 2002, Song et al. 2007).

[atitude

INSTANT observations (2004-2006) provide
“near” direct measurements of ITF transport
to evaluate ODA products.

ITF transport defined as the total Pacific-to-Indian
Ocean volume transport through the Lombok and
Ombai Straits and Timor Passage (see Fig.)

nude

ECCO2 2004-2006 mean ITF transport about 13 S'v

consistent with INSTANT estimate (15 Sv) to within-11}”

uncertainty (25% )

ECCO2 has realistic time-mean transport through
Lombok Strait, too much flow through Ombai, too
little flow through Timor.

{_“—"[ e

\._.x F W‘ﬁ

B KALIMANTAN o=

< Pacific

o]

10F

121+

mmE

122
Iongnude




Comparison of seasonal & non-seasonal anomalies of ITF transport

Color curves represent

other ODA products:
CERFACS (France),
ECCO-GODAE-v3,
ECCO-JPL,

ECMWEF,

INVG (Italy),

Mercator (France),
MOVE-G (Japan),

(a) Seasonal anomaly of ITF transport (Sv)
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ECCO2 has a dominant semi-annual signal (like

ITF transport anomaly (Sv)
o

SODA i ODA products have dominant annual cycle | | ]

(all of which have lower

resolutions, 0.4° to 2°) 2 4 6 8 10 12
Month

The better agreement > (b) Non-seasonal anomaly of ITF transport (Sv)

between ECCO2 & INSTANTZ. ¢
is attributed to its higher
resolution on a C-grid that
allows a better
representation of flows
through narrow channels
(esp. deep signals from the
IO, e.g., semi-annual
waves)
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Using Argo to estimate basin-
Infegrated, transport
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Argo does
not sample
regions
shallower
than 2000 m
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Using ECCO2 in a Sea State Bias Study J. Hausman and V. Zlotnicki

Since wave troughs are better reflectors than wave crests, radar altimeters measure the sea
surface lower than what it really is. To correct this you add a sea state bias (SSB).

There are two methods to solve for SSB, consecutive cycle differences (CCD) and differences

from a mean
*To see which method is more accurate we calculate SSB using wind and wave data from

Jason-1 and sea surface height from ECCO2.

*Since model output has no SSB, the method that
solved for SSB the closest to zero was the more accurate
one.

*CCD was more accurate. Using a mean allows for
decadal signals or other low frequencies to “leak” into
the solution.
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At Bermuda... Color shows meridional gradient

Brian Dushaw:
of mode-1 phase speed.
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SWOT Ocean Cross-Over Calibration Concept

* Roll errors must be removed by
a Calibration calibration

t'::*' Region2-3 &‘9
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* Interpolate along-track baseline
parameters between calibration
regions by optimal interpolation,
assuming roll error correlation
function is known

Calibration
Region 1- 4
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Using ECCO-2 for Cross-Over

SWOT Simulation

* |ssues relative to previous WSOA studies

— The repeat time has increased from 10 days to 22 days. The revisit time
between cross-overs has increased

— Change in orbit inclination relative to Jason altimeter means that cross-
over geometry has changed

— To capture these changes, a realistic representation of the ocean
mesoscale is required

« ECCO-2 provides a unique capability for representing the ocean mesoscale
realistically.

— Used 30 days of ECCO-2 data to assess the validity of the cross-
calibration process

— The initial assessment was sufficient to assess the SWOT feasibility.
However, getting global statistics requires a longer global data set.

— A gobal simulation of SWOT data products will be conducted using one
year of ECCO-2 data (Thank you ECCO-2 community!)
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SWOT Results without ocean motion

. RESUltS ShOW that Error represents swath average error
changes in cross-over S No ocean motion
geometry have not =
affected the calibration Eii:.
accuracy .

* Results also show that s LA
interferometer only Height Eor e

calibration is sufficient for
roll restitution

* Interferometer-Altimeter
cross-calibration required
for range calibration to
altimeter global frame
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SWOT

Simulations with ocean motion

* (Ocean motion between
cross-over revisits is the

dominant contributor to
the roll calibration error

budget

* In general, the calibration

parameters are well
behaved, but the

distribution has large tails
*« 68% error < 1.5 cm
* 80% error < 2.0 cm
* 90% error < 5.0 cm

Error represents swath average error
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SWOT Assessment of cross-over
calibration impacts

« The roll stability Tkm-1000km (requirement) is not dependent on the
cross-over calibration, but on platform stability

« Wavelengths longer than 1000km (goal) are dependent on the roll
calibration

* Results of the simulation using ECCO-2 data show that the long-
wavelength errors of SWOT can be calibrated with an accuracy
consistent with nadir altimeter missions

* Results presented here are preliminary

— Final results will use one year of ECCO-2 data
« |ssues that need to be investigated:

— Dropping cross-overs with long revisit times

— Dropping cross-overs over regions of high mesoscale activity
— Dropping estimates inconsistent with optimal interpolation

« Key issue in the mission design:
— Correlation time for spacecratft roll
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