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ECCO2: High-Resolution Global-Ocean and Sea-lce Data Synthesis

Objective:
Motivation:

Forward model:
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WOAO5 pot. temp. in top 750 m (°C)

1992-present eddying

global-ocean and sea-

ice solution obtained
using a Green’s

function approach

Data constraints:

- sea level anomaly

- time-mean sea level

- sea surface temperature

- temperature/salinity profiles F——

- sea ice concentration
- sea ice motion
- sea ice thickness

~80 control parameters:

- initial temperature and salinity conditions
- atmospheric surface boundary conditions
- background vertical diffusivity

WOAO5 salinity in top 750 m (PSU)
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- critical Richardson numbers for Large et al. (1994) KPP scheme

- air-ocean, ice-ocean, air-ice drag coefficients
- ice/ocean/snow albedo coefficients
- bottom drag and vertical viscosity
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Cost

Eddying, global-ocean, and sea ice solution obtained using
the adjoint method to adjust ~10° control parameters

Cost functions reduction during first 22
forward-adjoint iterations
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« Baseline solution derived
from optimized Green’s
function solution and OCCA
(Forget 2010) climatology

» Optimization period is
beginning of ARGO-rich
period (January 1994 to
April 1995)

* Huge computation: ~1
week per forward-adjoint
iteration on 900 CPUs and
3.6 TB of RAM

* 41% overall cost function
reduction after 22 forward-
adjoint iterations



Reduction of root-mean-square model-data residual

rms(Optimized —- AMSRE SST) — rms(Baseline — AMSRE SST)
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Importance of using physically consistent solutions for tracer studies

Estimate of CO2 air-sea flux during 97-98 EI Nino
(mol/m2/yr) based on Kalman filter solution

El Nino 1997-1998 Kalman unsmoothed

Observed estimate of CO, flux
during 92-93 EI Nifio (mol/m?/yr)
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Estimate based on smoothed solution
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Darwin ecosystem model in
ECCO2 cs510.
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Biogeochemical approach based on “self-organizing” principle — Follows et. al, Science, 2007.
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1998-01-01

Conventional, ocean color, view of
solution v. SeaWIFS.

seawifs

model

Top panel — SeaWIFS monthly
composite Chl concentration
1998-1999.

Bottom panel — cube84 + 78
species self-organizing
ecosystem model simulation
for 1998-1999.

i.e can recover fields that are
calculated in traditional NPZD
approach... but can now look
at what species are

contributing to Chl where and
when.



Species mix v. space and time — global
view.

SeaWIFS Chl

» comparison on previous slide is
mtegral over multiple different species (both in
real wolrd and in model).

Movie shows concentration of different species
categories as a function of space and time.
Diatoms (red), prochlorococus (green),
picoplankton(blue), everything else(yellow) all
contribute to the overall growth rate. At different
times at some location different species may
dominate. This is driven by relative fitness of the
species wrt to local nutrient, light, temperature
conditions — but it is also modulated by fluid
transport.

| ecoroey |
Seasons and diversity

Armstrong, Nature
Geoscience, 2010.




me — local

Species mix v space and t
Views.

Individual species abundance at yellow x as function

N
of time.
local species abundance
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Can relate to ecological provinces.
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Model species
abundance should be
equivalent to
“provinces” (Longhurst)
— can be compared
against observationally
inferred provinces.

Role of flow can be
understood through
looking at local growth
rate versus actual
abundance (which
includes fluid transport).



Connecting to CO2 estimates

o OBSERVATIONS

A
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e ¢s510 + ecosystem =@ alternate
perspective on biological activity,
species diversity.

* emergent virtual species analogs of
ocean ecotypes.

e for CMS nutrient source/sink terms
include

— carbon chemistry.
— carbon exchange with organic pool for
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Follows et. al, Science, 2007.
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pCO2,

chemical exchange f (T,pH,ApCO2)

pCO2, j The “biological pump”
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» Regeneration of carbon
and nutrients

remineralize at depth.....



Example Northern Hemisphere (NH) winter, monthly mean surface
CO, flux map (molC/m?/yr, from cyclic year spin-up phase).

10

s NH uptake as waters

__— Equatorial upwelling
d =>» outgassing.

Sign reversal ~along
wind stress curl sign
change line (we also
see Ekman pumping/
sinking signature in
NH summer).

Southern Ocea
outgassing in SH
summer.



Example Northern Hemisphere (NH) winter, monthly mean surface
CO, flux map (molC/m?/yr, from Takahashi climatology).




Requirements for interfaces

* Atmospheric CO2 values
— Fixed value?

— Variable fields?

* Physical variables? Problematic as ECCO2
solution is optimized for particular set of
forcing fields/parameters



