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Reconstructing the Earth system for climate studies is
challenging due to errors and uncertainties in initial
conditions, boundary forcing, model parameterizations, and
computational resource limitations.

Imperfect boundary * Numerical limitations
conditions — Spatial resolution: eddies,
— Surface atmospheric boundary currents, leads

conditions (ABL in MIZ) in sea ice
Model Physics and * [nitial conditions
Parameterizations — Ice thickness distribution
— Coupling of sea, and ice — Ocean state
components

— |ce thickness distribution



Why do we need to assimilate sea ice
observations in coupled ocean-ice models?

Coupled ocean-sea ice models drift, sometimes severely,
even when hydrographic data is assimilated.

Errors in sea ice representation can generate systematic biases
in the surface boundary conditions.

é% Surface buoyancy loss % é %

0

Pusceddu et al. 2010



What are the common challenges associated
with coupled ocean-ice data assimilation?

 Poorly known observation and model errors

— Are observation uncertainties dominated by representation or measurement
error?

— What are their spatial and temporal dependence?
— Sea ice observation uncertainties are non-Gaussian

 Sparse observations
— Little in the high-latitude oceans
— lce data mainly limited to velocity (except summer) and concentration
— Few thickness data

* Little-to-no reliable knowledge of covariances (ice-ice and ice-ocean)

— Ideally, assimilating ice data (e.g., concentration) should improve:
e ocean state beneath ice
e other ice state variables (e.g., thickness distribution)
e ocean and ice state in the vicinity of the observation

— Covariances are very probably highly variable in space and time



Today’s review of ocean-ice data
assimilation is limited in scope.

 Two-way coupled ocean-sea ice models

 The assimilation of both ice data (e.g., concentration,
velocity) and hydrographic data (e.g., SST, T, S profiles, SSH)

* 5 systems described

— Forecasting systems (days-seasons)
— Reanalyses (decadal)
— State estimates for climate analysis (annual-decadal)



Reviewed Projects

_ Project Focus Ice data assimilated Assimilation Method

ECCO MIT JPL State estimation +  Concentration (SSM/I) Adjoint (Ocean + Ice)  Annual-
Climate analysis Decadal

ECCO2 MIT JPL State estimation + Concentration (SSM/1) Green’s Functions Decadal
Climate analysis Velocity (Kwok JPL) (Ocean + Ice)

Draft (submarine)

Climate Forecast Climate reanalysis Concentration 3DVar (Ocean + Atm) Decadal
System Reanalysis Direct insertion (Ice)
(CFSR) NCEP Initial conditions for

forecasting

FOAM UK Met Short-term Concentration Variant of optimal Week
Office forecasting interpolation

(Ocean+lce)
TOPAZ NERSC + Short-term to Concentration (AMSR-E)  EnKF (Ocean + Ice) Week
Met.no seasonal forecasting Velocity

+ Reanalysis



ECCO ADJOINT SYSTEM



ECCO-GODAE MIT adjoint-based estimation

» Assimilate a large suite of existing
In-situ & satellite data using the
adjoint method by adjusting prior
surface forcing & initial conditions.

*MITOGCM, 1 x1
 Current product period: 1992-2009
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DATA CONSTRAINTS

Sea level: Altimetry (TOPEX/Poseidon, JASON-1, GFO,
ERS-1/2, ENVISAT)

Sea level: tide gauges

Wind stress: scatterometry (NSCAT, ERS-1/2,
QuikSCAT)

SST: AVHRR, TMI on TRMM; AMSR-E on Aqua

T & S climatology (time -mean & seasonal cycle)

T & S: CTD synoptic sections

T profiles: XBTs

T & S profiles: ARGO Floats

Sea surface salinity: in-situ survey

Temperature and velocity: TOGA-TAO mooring array

Temperature & salinity: Elephant seal profiles
(experimental)

Geoid: GRACE

Model Controls: Initial conditions, atmospheric state




The 1/3 degree (32 km) regional model is one-way nested inside the
1-degree ECCO solution.

Location of in situ ocean
obs, 1996-1997

20 il
7

Salinity at 20 m. State Estimate and ECCO solution 3/10/1997

Blue = Ship-based CTD
Red = XBT
Black = Profiling Floats
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Sea Ice Concentration Data
25 km SSM/I product
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The reconstruction of the ice and ocean states were made
consistent with observations and their uncertainties.

Total sea ice area
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ECCO2 GREEN’S FUNCTIONS SYSTEM



ECCO2: High-Resolution Global-Ocean and Sea-lce Data Synthesis

Objective: synthesis of global-ocean and sea-ice data that covers the full ocean depth and that permits eddies.
Motivation: improved estimates and models of ocean carbon cycle, understand recent evolution of polar oceans, monitor
time-evolving term balances within and between different components of Earth system, etc.

Forward model:

0.5
* MITgem

* cubed-sphere
configuration

* 18-km
horizontal grid

* 50 vertical
levels

KPP vertical

ECCO : 1992 - 2002 T
1992 * dynamic-
Velocity (m/s) thermodynamic
At 15 m depth sea ice

11/2/2010




First-guess (AO) model parameters were adjusted to
ultimately reduce the model-data misfit cost function in the
state estimate (Al).

Parameter A0 Al
Initial conditions ECCO2 WOAO05

Atmospheric forcing | ECCO2* JRA25
Ocean albedo 0.1507 0.1556
Sea ice dry albedo [0.8783 0.7

Sea ice wet albedo |0.7869 0.7060

Snow dry albedo 0.9686  0.8652

Snow wet albedo 0.8270 0.8085

. | ~ O'S-IIIData
Ocean/air drag 1.0185 0.9997 EU../ 0l w— A ()
Air/sea ice drag 0.002 0.00114 o Al
Ocean/sea ice drag |0.0052  0.0054 *C% —0.5) '
Ice strength P* 2.6780  2.2640 g —1| Jr23 p
Lead closing H, 0.5 0.6074 g -
Vertical diffusivity |107° 5.44 x 1077 et 1'5!- 1
Salt plume oft on . . . . -
River runoff factor |1 1.2472 (a) 28 30 Salinl%)zl 34



CFSR HYBRID ASSIMILATION SYSTEM



CFSR assimilates ice and ocean obs. in an atmosphere-
ocean-land surface-sea ice system.

1/4-1/2 degree horizontal res.

lce concentration 9/1987

* |nteractive sea ice model component

— Ice state freely evolves over forecast step

— Atmosphere is likely improved in the
vicinity of the marginal ice zone

 Direct replacement of ice
concentration in analysis step

— Assumes ice forecast has no skill

— unless SST analysisis >273.3 Kor
observed concentration < 15%

* No explicit ice observation error or
background error covariances

— ice innovation conserves salt when new
ice is formed or all ice is removed

Saha et al., 2010



FOAM Ol DATA ASSIMILATION SYSTEM



The FOAM system assimilates ocean and ice

observations to initialize forecasts.

1

1/12-1/4 degree horizontal res. ___A-Ibal_
Interactive sea ice model component iy

— lce state freely evolves during forecast

— Met Office NWP forecast used as

atmospheric forcing

Spatially and temporally-varying ice
observation errors derived from

hindcast experiments

No formal background error
covariances

— Ad hoc ice concentration-ice thickness
covariance: new concentration adds ice in
thinnest category

— Ad hoc ice volume-ocean salinity
covariance: ocean salinity is conserved
after ice volume increments in analysis
step




The FOAM system generally can reduce ice
concentration RMS error in the analysis to below 10%.

Sea-ice concentration
observations Model background

(OSI-SAF analysis) sea-ice concentration

Obs-model

From Poster: The global FOAM system, Martin 2008



TOPAZ ENKF SYSTEM



The TOPAZ system assimilates ocean and ice observations to
initialize 10 day forecasts using the EnKF.

TOPAZ3 Domains: Arctic/N. Atlantic

* 11-16 km horizontal res. Fram Strait, Barents Sea

* Interactive sea ice model component

— lce state freely evolves over forecast step

— ECMWF NWP forecast used as upper
boundary forcing (constant ice boundary
conditions)

* |ce concentrations obs. errors are a
function of ice concentration

— 10% baseline
— up to 70% when ice concentration <= 50%)

 Background error covariances
calculated from 100 member
ensemble

— “smooth localization” ~ 300 km

= 'Q_.— &

. . TOPAZ3 SST May 1990 k 2
— After analysis step, ocean and ice states 2 wee

may not be consistent (but are physically
bound)



TOPAZ system reproduces ice edge position, concentration, and drift well
and provides estimates of unobserved variables such as ice thickness.

Greenland Sea: Ice Concentration Analysis

Arctic Ocean : Ice Thickness Analysis

Ice concentration and drift - 25-Oct-2010
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Summary

Ice data assimilated Ice obs. uncertainties | Ocean-ice coupling in
assimilation (covariance info)

ECCO MIT JPL Concentration (SSM/I) Spatially and Ocean and Ice states are always
temporally-varying consistent because model state
measurement and freely evolves from the model

representation errors  physics

ECCO2 MIT JPL Concentration (SSM/1) Constant Ocean and Ice states are always
Velocity (Kwok JPL) representation error consistent because model state
Draft (submarine) freely evolves from the model
physics
CFSR NCEP Concentration Model is assumed to Ocean and atmosphere are not
have no skill. updated after ice innovation
FOAM UK Met Office. = Concentration Spatially-varying Salt - but not energy - is
representation error conserved after ice innovation
TOPAZ NERSC+ Met.no Concentration (AMSR-E) Constant Covariance structure estimated

Velocity from ensemble



Future Plans for U.S. centers

- New Sea Ice Data Assimilation Method Model configuration

ECCO MIT JPL Higher resolution ice Adjoint method 1-degree global and 1/10-
concentration, velocity, and degree Arctic+North
freeboard and draft. Atlantic Sea Ice-Ocean

model

ECCO2 MIT JPL Ice thickness from new Green’s Functions + Adjoint 1/8-degree global and
remote sensing platforms method regional (e.g., Arctic,

Southern Ocean, West
Antarctica) Sea Ice-Ocean

model
CFSR NCEP Ice velocity and thickness 3DVar and Direct Insertion  ?
GFDL Concentration, thickness, EnKF High res global
velocity Atmosphere-Sea Ice-Ocean

model (S. Zhang’s talk)

U.S. Navy Concentration 3DVar (NCODA) 1/12-degree global Sea Ice-
Ocean



Open questions

What are the right model controls for state estimation methods used for climate
analysis?

— Are adjusting initial and boundary conditions sufficient or should we also try to focus on model
parameters?

— Could the answer depend on the approach (adjoint vs. Green’s Function)?

For coupled reanalysis efforts (e.g., CFRS), is anything more than direct insertion of ice
data required for the solution to be useful for initializing prediction systems?

Will the assimilation of near real-time estimates of ice motion improve short-term
forecasts?

Can we quantify how the assimilation of ice data improves the forecasts, reanalyses, and
climate state reconstructions of the ocean?

Do the background error covariances derived from the EnKF ensembles really represent
the relationship between the ocean and ice states given their highly nonlinear
interaction?

What is the impact of assimilating sea ice data into coupled atmosphere-ocean-sea ice
models for the initialization of long-term (decadal) on climate predictability?



Bottlenecks to Coupled Ocean-lce Data
Assimilation in the U.S.

Lack of ice and high-latitude ocean observations : lack of ice thickness data remains a

major problem

The sea ice models: ODA groups do not necessarily have access to expert sea ice
modelers — ice models are often outdated and may not be appropriate for data

assimilation.

Sea ice data expertise: ODA groups and ice observation specialists with knowledge on

the data and its errors tend to be separate communities.

The ice-ocean coupling: Tends to be done in an ad hoc way in global models and is

therefore likely a major source of systematic model bias.

Covariances : There is virtually no knowledge of the appropriate ice-ice and ocean-ice

covariances.



Recommendations

e (Observation side:

More in situ ocean observations at high latitudes

Climate analysis: consistency of data across observing platforms
Forecasting: ice motion in near-real time

Provide uncertainties with product(e.g., DMI OSI-SAF, GHRSST)

Atmospheric reanalyses should come with 1) uncertainties and/or 2) easy access
to database of observations/uncertainties assimilated so we can make our own

guess as to its skill

e Statistics side:

Research into understanding ice-ice, ice-ocean covariance structure

* Modelling side:

More research on how to properly couple ice and ocean components of global-
scale models

More support for interaction between ice modelers and existing ocean
forecasting/state estimation groups.

More support to port “modern” sea ice models into existing ocean models.
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