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ABSTRACT

A recipe for the linearization and state reduction of a general circulation model (GCM) is evaluated in a North
Pacific test basin. The underlying assumption is that modern GCMs are, or will become, sufficiently accurate
so that large-scale differences with the real ocean are small and have linear physics. Model Green’s functions
are used to construct a reduced-order linear model that compares favorably with the large-scale response of the
GCM away from the western boundary. In a numerical example, the linear model is applied to the estimation
of the large-scale internal structure of a simulated ocean using pseudotomographic and altimetric measurements.
The sensitivity of the solution to a priori statistical assumptions is analyzed. Several algorithmic improvements
are explored to render the estimation procedure more efficient, more accurate, and easier to implement than in
previous studies.

1. Introduction

We evaluate the response of a general circulation
model (GCM) to large-scale density perturbations in the
North Pacific and construct a simple linear model that
approximately describes the time evolution of these per-
turbations. This study is of interest both because it pro-
vides insight in the large-scale response of the model
ocean and because of the possible use of the linear model
for data assimilation leading to improved estimates of
oceanic climate. The study was initiated in anticipation
of long-range tomographic measurements to be made
by the Acoustic Thermometry of Ocean Climate
(ATOC) project in the North Pacific. An example is
presented using simulated tomographic and altimetric
observations.

A fundamental requirement for monitoring oceanic
climate and climate shift is the separation of the large,
slow scales of oceanic variability from the mesoscale
and other short-term variability. This separation of
scales is often performed using low-pass filters (Levitus
et al. 1994; Parrilla et al. 1994; Roemmich 1992) or
objective analysis procedures (Bindoff and Wunsch
1992; Fukumori and Wunsch 1991; Levitus 1990). But
the expected amplitude of the climate signal is small
relative to the natural variability, and the available ob-
servations are scarce and disparate. Our objective is to
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improve the estimates of oceanic climate by combining
the available observations with a modern GCM.

The optimal combination of oceanic data and models
is extensively discussed by Wunsch (1996), Bennett
(1992), Ghil and Malanotte-Rizzoli (1991), and refer-
ences therein. The most successful estimation methods,
that is, the ones that can provide optimal state estimates
and error statistics, are applicable to linear or linearized
problems. However, most oceanographic and other real-
world problems are intrinsically nonlinear.

Another complication is the computational burden of
the estimation algorithms. The complete characteriza-
tion of the error statistics requires the storage and ma-
nipulation of a covariance matrix with a dimension
equaling the square of the model state. For example,
one of the models used in the current study has a state
size of 106, which is modest by modern GCM standards.
This model requires 1 h of processing time per year of
integration at a sustained rate of 1 Gflop s21. The error
covariance matrix would have 1012 elements and require
on the order of 100 yr of processing time per year of
integration for its computation. Hence, the brute-force
solution of the estimation problem is impractical for the
foreseeable future, even with the anticipated availability
of teraflop-per-second supercomputers.

For the above reasons, the art of data assimilation
often resides in finding ways to linearize and reduce the
dimensions of the problem at hand. Fukumori and Ma-
lanotte-Rizzoli (1995), and Stammer and Wunsch
(1996) provide recent examples of practical estimation
methods for use with large nonlinear GCMs. The former
is a sequential method based on a reduced-order steady-
state, linearized Kalman filter. The latter is a ‘‘whole
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FIG. 1. Schematic representation of the interpolation and state re-
duction operators.

domain’’ inversion based on the computation of model
Green’s functions. Although the two approaches were
applied to different domains and dynamical regimes,
they both make use of reduced effective model dimen-
sions and of time-invariant linearization of the dynam-
ical model.

The current study is an extension of the work reported
by Stammer and Wunsch (1996). They used a 4-level,
18 North Pacific realization of the Geophysical Fluid
Dynamics Laboratory (GFDL) model and constrained
it to consistency with a year of TOPEX/Poseidon alti-
metric data. They linearized the numerical model by
computing its response to a series of isolated, geo-
strophically balanced vortices. The resulting Green’s
functions provided the kernels for a whole domain linear
inverse problem. The perturbation analysis is repeated
here at higher vertical resolution, 20 levels instead of
4. In addition to the GFDL model, we also make use
of a new GCM developed at the Massachusetts Institute
of Technology (MIT). The Green’s functions compu-
tations are initialized using large-scale density pertur-
bations instead of large-scale vortices. This approach
excites a predominantly baroclinic response and is better
suited to the study of the large, slow scales of oceanic
variability. The baroclinic response is very sensitive to
the details of the internal oceanic structure, while the
depth-averaged response is sensitive to surface wind
forcing and topography.

The model Green’s functions can be represented ef-
ficiently by a state-transition matrix instead of the ex-
plicit storage of a set of response functions. For typical
problems, the former representation reduces the com-
putational cost and storage requirements of the Green’s
functions by more than an order of magnitude, and the
estimation problem can be solved by a sequential filter/
smoother formalism instead of a whole domain ap-
proach. The increased efficiency greatly extends the size
of problems that can be tackled with currently available
computational resources.

The remaining discussion is organized as follows. The
climate estimation problem is formally defined in sec-
tion 2. Section 3 is a brief description of the GCMs
used in the current study. The response of the MIT GCM
to internal density perturbations is discussed in section
4, setting the stage for the state-reduction approximation
of section 5. Two methods for obtaining a linearized
model are presented in section 6. In section 7 we provide
a numerical example of the estimation problem using
simulated altimetric and tomographic measurements,
and we evaluate the sensitivity of the solution to a priori
statistical assumptions.

2. Problem statement

Let j (t) represent the state of the ocean at some
time t and be an estimate of this state provided byĵ (t)
a numerical model. For example, the state vector of the
MIT GCM described in section 3a comprises temper-

ature, salinity, and three components of velocity at each
grid point. Algebraically, the GCM can be described as
a rule for stepping the state vector forward,

,ˆ ˆj(t 1 1) 5 F [j(t), w(t)] (1)

where w(t) represents boundary conditions and model
parameters at time t. We make the fundamental as-
sumption that for large scales, the difference between
the true and model states,

x(t) [ B*[j(t) 2 ,ĵ(t)] (2)

is sufficiently small so that the physics of x(t) are es-
sentially linear:

x(t 1 dt) 5 A(t)x(t) 1 q(t), (3)

where x(t) is the reduced state vector, A(t) is the state
transition matrix, q(t) is the control variable that ac-
counts for model error, and dt represents the linearized
model time step that in practice can be considerably
longer than the time step of the GCM. We use dt 5 30
days for the linearized model and 1-h time steps to
integrate the MIT and the GFDL models.

Matrix B* represents the state reduction operator that
projects the perturbations onto some truncated basis set
(see Fukumori and Malanotte-Rizzoli 1995). Here, it
may be thought of as a filter that attenuates mesoscale
noise to capture the ocean-climate signal. A pseudo-
inverse operator B is also defined such that

B*B 5 I, BB* ± I, (4)

so that it is possible to write

j(t) 2 5 Bx(t) 1 e(t).ĵ(t) (5)

Here, B is an interpolation operator that maps the re-
duced state vector back onto the original grid, I is the
identity matrix, and e(t) represents the high-frequency/
wavenumber components that lie in the null space of
the transformation

B*e(t) 5 O, (6)

with O being the zero matrix (see Fig. 1). A specific
example and more complete discussion of the state re-
duction approximation follow in section 5.

The linearized model in (3) implies that large-scale
perturbations described by the reduced state vector x(t)
are approximately dynamically decoupled from the un-
resolved scales e(t); that is,

.ˆ ˆB*F [j(t) 1 e(t), w(t)] ; B*F [j(t), w(t)] (7)
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TABLE 1. Description and definition of estimation matrices.

Name Description Definition

A
B*
B
E
P
Q
R
S

Linear model
State reduction
Interpolation
Measurement model
Uncertainty matrix
System error
Measurement error
State covariance

x(t 1 dt) 5 Ax(t) 1 q(t)
x(t) 5 B*[j (t) 2 (t)]ĵ
B*B 5 I, BB* ± I
y(t) 5 EBx(t) 1 n(t)
P 5 ^(x̂ 2 x)(x̂ 2 x)T&
Q 5 ^qqT&
R 5 ^nnT&
S 5 ^xxT&

The validity of this assumption for the North Pacific is
tested in sections 4 and 6 using the MIT and the GFDL
models.

Most measurements can be represented as some linear
combination of the state vector j(t) plus noise n(t);

h(t) 5 E(t)j(t) 1 n(t). (8)

Typically, matrix E is sparse with only a few nonzero
elements corresponding to the measurement locations.
As discussed in section 7, ocean acoustic tomography
and satellite altimetry provide path and depth-integrated
information, respectively. In the current discussion, it
is convenient to define the observed difference between
the measurements and the GCM prediction:

ˆy(t) 5 h(t) 2 E(t)j(t) (9)

5 E(t)Bx(t) 1 n(t). (10)

In (10), the observed difference y(t) is expressed in
terms of the reduced state x(t). The noise term n(t) now
includes a term due to small-scale, high-frequency vari-
ability e(t) in the null space of B, as well as measurement
error n(t) from (8);

n(t) 5 E(t)e(t) 1 n(t). (11)

In practice, n(t) is often negligible relative to the sam-
pling error E(t)e(t) in (11). It should be pointed out that
in an analogous manner, n(t) contains a contribution due
to the unresolved scales and missing physics of the
GCM.

The problem consists in solving for x̂(t), the reduced
state estimate, and its uncertainty, P 5 ^(x̂ 2 x)(x̂ 2
x)T&, given measurements y(t) and a priori covariance
matrices Q 5 ^qqT&, R 5 ^nnT&, and S 5 ^xxT&. The
caret indicates an estimate, the angle brackets represent
an ensemble average, and superscript T is the transpose
operator. Solutions for the above problem are readily
available in the literature. The real challenge lies in
defining matrices A, B*, E, Q, R, and S (see Table 1).
This study pertains to the definition of A and B*, the
linear model, and the state reduction operator, respec-
tively. The consequences of using wrong a priori Q, R,
and S are explored in section 7.

3. Model description

The current study was initiated using the GFDL nu-
merical code and model output from a global eddy-

resolving integration by Semtner and Chervin (1992).
These results are reported in sections 6 and 7. We have
now switched over to the newly developed MIT GCM.
This model is used to carry out the perturbation analysis
reported in section 4 and will be the focus of our future
assimilation efforts. The above models and their con-
figurations are briefly described below.

a. MIT model

In its current configuration, the MIT GCM (Marshall
et al. 1997a,b) solves the incompressible Navier–Stokes
equations in spherical geometry, has a rigid lid, and
employs an equation of state appropriate to sea water.
Height is used as a vertical coordinate, and the model
can handle arbitrarily complex coastlines, islands, and
bathymetry. The model relaxes the hydrostatic approx-
imation but retains a ‘‘hydrostatic switch’’ that, if de-
sired, turns off nonhydrostatic terms for use in large-
scale modeling. It is prognostic in three components of
velocity, temperature, and salinity and diagnostic in
pressure. A finite volume, predictor–corrector numerical
procedure is used on a staggered (Arakawa ‘‘C’’) grid.
The model is implemented on parallel machines.

For this study, the MIT GCM is integrated in hydro-
static mode for the Pacific Ocean. It has realistic coast-
lines and bottom topography (Fig. 2). Bottom and side
walls are insulating. A no-slip side wall condition is
imposed and the bottom is free slip. The model domain
extends from 308S to 618N, meridionally, and from 1238
to 2928E, zonally, with horizontal grid spacing of 18.
There are 20 vertical levels (see Table 2), to a maximum
depth of 5302 m. At the surface, the model is relaxed
to climatological values of temperature and salinity with
a relaxation timescale of 25 days. At the southern
boundary, the relaxation occurs over a 500-km zone
with a timescale of 5 days at the boundary decreasing
linearly to 100 days at 500 km.

The model was initialized from climatological annual
mean temperature and salinity distributions (Levitus
1982), and a resting flow field. It was integrated for 17
years with annual mean temperature, salinity, and sur-
face wind forcing. From year 18 onward, monthly tem-
peratures and seasonal salinities were used, and the sur-
face was forced with the monthly winds provided by
Trenberth et al. (1989). The forcing fields were updated
every 24 h using linear interpolation from the monthly
or seasonal values. Surface heat and freshwater fluxes
from Oberhuber (1988) were introduced in the surface
layer starting on year 29, while continuing to relax to
climatological temperature and salinity. The model time
step is 1 h. Table 3 lists the mixing and diffusion co-
efficients.

Figure 3 displays the pressure and velocity fields at
the 38-m depth, after 43 years of integration. The major
climatological circulation components of the North Pa-
cific can be recognized (compare to Pickard and Emery
1990, Fig. 7.31). They include the Kuroshio and the
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FIG. 2. Coastlines and bottom topography used to integrate the MIT GCM. Contour interval is 1 km.

TABLE 3. MIT GCM mixing and diffusion coefficients for the
North Pacific integration.

Parameter
Years 1–33

(m2 s21)
Years 34–43

(m2 s21)

Horizontal mixing
Horizontal diffusion
Vertical mixing
Vertical diffusion

104

103

1022

5 3 1025

5 3 103

103

1023

3 3 1025

TABLE 2. MIT GCM vertical levels definition for the 20-layer
North Pacific integration.

Depth
(dbar)

Depth
(m)

Spacing
(dbar)

Depth
(dbar)

Depth
(m)

Spacing
(dbar)

12.5
37.5
62.5
87.5

12.7
38.2
63.7
89.2

25
25
25
25

847.5
1160
1542
1975

864.1
1183
1573
2014

275
350
415
450

117.5
160
222.5
310
435
610

119.8
163.1
226.9
316.1
443.5
621.9

35
50
75

100
150
200

2450
2950
3450
3950
4450
4950

2498
3008
3518
4027
4537
5047

500
500
500
500
500
500

Oyashio Currents, which join to give rise to the North
Pacific Current, the California Current, and the North
Equatorial Current. These current systems are part of
the North Pacific Gyre, and to the north, the Alaskan
Gyre. The model also reproduces the South Equatorial
Current, which straddles the equator, the Equatorial
Countercurrent centered at 78N, and just below the sur-
face the Equatorial Undercurrent (see Fig. 4). Figure 5
displays temperature, salinity, and density profiles av-
eraged over the model domain. There is a net influx of
heat at the boundaries and the model gets progressively
warmer, with a maximum warming of 28C at 300 m

after 43 years of integration: tracer profile gradients are
severely eroded. The conclusion is that the model ad-
equately reproduces the large-scale wind-driven circu-
lation but fails to properly represent the small-scale pro-
cesses responsible for interior property distributions.
Work is under way to address these gross model errors
by improving the parameterization of mixed layer dy-
namics and mixing processes in the interior. Neverthe-
less, the model as it stands suffices for the current nu-
merical study.

b. Bryan–Cox model

The linear model discussed in section 6 was obtained
using the GFDL GCM (Bryan 1969; Cox 1984) in the
configuration described by Stammer and Wunsch
(1996). The model has 18 horizontal grid spacing and
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FIG. 3. Pressure and horizontal velocity at the 38-m depth for the MIT GCM following the 42-yr spinup period. As
discussed in the text, the model reproduces the major North Pacific circulation patterns.

FIG. 4. Meridional section of zonal velocity near the equator at
2228E. Shaded areas and solid contour lines indicate eastward flow.
The model resolves the South Equatorial Current, the Equatorial
Countercurrent, and the Equatorial Undercurrent.

four vertical levels of thickness 100, 500, 1000, and
2400 m, respectively, to a maximum depth of 4000 m.
It was spun up for 23 years in the Pacific Ocean north
of 308S. As discussed by Stammer and Wunsch (1996)
this model simulated the major components of the North
Pacific circulation described earlier. However, the model
does not resemble observations in the Tropics due to
the low vertical resolution.

The state estimation example discussed in section 7
was carried out using output from a global implemen-
tation of the Bryan–Cox primitive equation model with
nominal grid spacing of ¼8 in the horizontal and 20
levels in the vertical (Semtner and Chervin 1992).

4. Perturbation analysis

The response of the MIT model to internal midlatitude
temperature perturbations is evaluated. This problem is
related to that of forced oceanic waves and geostrophic
adjustment, which is extensively discussed in the lit-
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FIG. 5. Model temperature, salinity, and density profiles. The dashed lines are the initial basin-
averaged profiles taken from Levitus (1982). The solid lines represent annual mean values during
year 43.

erature (see Gill 1982; Philander 1978; Blumen 1972;
and references therein). The difference is that the GCM
provides solutions that include the effect of realistic
topography, stratification, horizontal gradients, and
mean circulation. The objective is to obtain guidelines
for the state reduction approximation and model line-
arization to be discussed in subsequent sections. In par-
ticular, the extent to which the large, slow scales of the
model response are dynamically coupled to the smaller
or faster features resolved by the model needs to be
determined.

Following the 43-yr spinup described in section 3,
the MIT GCM was integrated for an additional 2 yr with
monthly forcing. This 2-yr integration provides the ref-
erence state for the perturbation analysis. Starting at the
beginning of this period, temperature anomalies are in-
troduced in the model. The model is then integrated with
the same boundary conditions and model parameters as
before and the time evolution of the perturbations rel-
ative to the reference state is recorded.

The first experiment studies the model response to
the warming of a lens of water centered at 34.58N,
209.58E at a depth of 350 m. The perturbation has hor-
izontal extent of 168 (;1600 km), both zonally and
meridionally, and a vertical extent of 500 m. It is tapered
by a Hanning (cosine) window in all three directions
with a maximum perturbation of 0.18C at the center. No
attempt was made to introduce the corresponding geo-
strophic velocity perturbation because, as is shown be-

low, the geostrophic adjustment transients can be ne-
glected.

Figure 6 shows surface pressure and horizontal ve-
locity during the geostrophic adjustment period. The
flow is initially downgradient but, as expected, it comes
to complete geostrophic equilibrium within 20 to 25
inertial periods (;21 h at that latitude) (see Gill 1982,
section 7.3). Inertial oscillations associated with the ra-
diation of inertia–gravity waves from the region are
clearly seen in Fig. 6. The geostrophically adjusted state
is that of a warm core anticyclonic eddy, overlying cy-
clonic circulation caused by vortex stretching as the
lighter water rises to its new equilibrium position. From
geostrophic considerations, the strength of the surface
velocity perturbation is

gdzdr
21dy ; 5 0.07 cm s , (12)s frdx

where g 5 9.8 m s22 is the acceleration due to gravity;
dz 5 500 m and dx 5 1600 km are the vertical and
horizontal length scales of the disturbance, respectively;
f 5 8 3 1025 s21 is the Coriolis parameter; and dr/r
5 1.7 3 1025 is the fractional density change corre-
sponding to a 0.18C warming at that depth. The under-
lying cyclonic perturbation is such that the depth-inte-
grated velocity is approximately zero so that the velocity
perturbation below the temperature anomaly is

dvb ; h1dys /h2 5 0.005 cm s21, (13)
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FIG. 6. Surface pressure and horizontal velocity during the geostrophic adjustment period
following the introduction of a warm lens centered at 34.58N, 209.58E, and 350-m depth.
Contours are from 0.05 to 0.45 by 0.1 cm. A maximum speed of 0.21 cm s21 is observed at
hour 8, and subsequently decays to 0.11 cm s21 on day 30.

where h1 5 350 m and h2 5 4650 m represent the height
of the water column above and below the disturbance,
respectively. In the model, the depth-integrated pertur-
bation velocity is nonzero because of residual terms
from the geostrophic adjustment process (;1026 cm s21)
and because of nonlinear flow interaction with bottom
topography, horizontal density gradients, and the mean
circulation (;0.01 cm s21). The contribution from the
geostrophic adjustment process is negligible. However,
the topographic and other nonlinear effects are of the
same order of magnitude as the cyclonic flow below the
perturbation and they cannot be neglected. Its spatial
structure would be difficult to predict from theoretical
considerations alone, but it is readily provided by the
numerical model.

In an analogous manner to geostrophic adjustment,
but on much longer timescales, the model ocean returns
to local Sverdrup balance by radiating Rossby waves
away from the perturbed region (e.g., Gill 1982, section
12.4). Figures 7a and 8a show the model response at
the end of month 16. The pattern is characteristic of
long westward propagating baroclinic Rossby waves
(see Gill 1982, section 12.3). The waves exhibit the

expected decrease in phase speed with increasing lati-
tude (the southwest-northeast slope of the patterns), but
are modified by complex interactions with topography,
horizontal density gradients, and the mean flow field
(note the southeast drift of the pattern relative to the
initial location of the disturbance). The observed phase
speed of the first baroclinic mode is c ; 3 cm s21 at
34.58N, which suggests an internal radius of deforma-
tion LD ; (c/b)1/2 ; 40 km, where b 5 1.9 3 10211

m21 s21 is the variation of the Coriolis parameter with
latitude. Higher baroclinic modes have progressively
slower phase speeds, causing the separation of the dis-
turbance into several baroclinic modes. Finally, we note
that the contribution of salinity to the density pertur-
bation is not insignificant. For example, a salinity
change of order 0.005 psu is observed near the surface
at the end of month 16, compared to a temperature per-
turbation of order 0.058C. These correspond to density
perturbations of order 0.0035 and 0.01 kg m23, respec-
tively. On average, the net effect of changes in model
salinity is to decrease the total density perturbation due
to the temperature anomaly.

To verify that the geostrophic adjustment transients do
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FIG. 7. Model pressure and horizontal velocity at the 316-m depth: (a) 16-month response to a large-scale
temperature perturbation at 34.58N, 209.58E, and 350-m depth; (b) same as in (a), but the velocity and salinity
fields were returned to the reference level at the end of the first month; (c) 16-month response to a localized
temperature perturbation (the upper left-hand corner of the domain, north of 358N and west of 1708E, has been
scaled down by a factor of 20). The heavy dots indicate the initial location of the disturbances. As discussed in
the text, the agreement between the three cases away from the western boundary suggests that the geostrophic
adjustment transients have little effect on the evolution of the perturbations, and that the large, slow scales of the
model response are effectively decoupled from the smaller scales.

not influence the large-scale model response, the model
was perturbed with the same temperature anomaly as be-
fore, but the velocity and salinity fields were returned to
the reference state at the end of the first month. This
initiates a second adjustment period. The resulting model
response at the end of month 16 is shown in Fig. 7b.
Except near the western boundary, the pattern is almost

indistinguishable from that of the previous experiment. In
the Kuroshio region, the model response is very sensitive
to small perturbations because of the strong currents and
density gradients. The similarity of Figs. 7a and 7b is not
surprising because a large fraction of the energy of long
planetary waves is in potential form. For Rossby waves
with wavelength l . 1000 km [Gill 1982, Eq. (12.3.9)]
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FIG. 8. Zonal section of meridional velocity at 34.58N. Shaded areas and solid contour lines indicate northward flow.
(a) Zonal section through the same field as in Fig. 7a. (b) Model response to the same perturbation as above, but for
an unforced ocean that is initially at rest and has no horizontal temperature or salinity gradients. The initial temperature
and salinity profiles for (b) were set by averaging the profiles of the realistic run in an area extending from 208 to 458N
meridionally and 1708 to 2308E zonally. The important differences between (a) and (b) indicate that the model response
is a sensitive function of the internal oceanic structure. (c) Same as in (b) but for a flat-bottom ocean. The resemblance
of (b) and (c) means that topography plays a relatively minor role in the baroclinic response of the model ocean to
near-surface density perturbations.

kinetic energy density
25 (k L ) , 2%, (14)h Dpotential energy density

where kh 5 2p/l is the horizontal wavenumber.
In a third numerical experiment, the model was per-

turbed with a 0.18C temperature anomaly in a single
grid box at 34.58N, 209.58E and 350-m depth. This im-
pulse function excites all spatial and temporal scales
that can be resolved by the GCM. The response at the
end of month 16 is shown in Fig. 7c. Although there
are differences in the details, the large-scale response
away from the Kuroshio region is clearly similar to that
of previous experiments. This suggests that away from
the western boundary, and for the current model con-
figuration, the large-scale low-frequency response is ef-
fectively decoupled from smaller and faster processes.
In the context of the current study, the complicated re-
sponse near the western boundary can be accounted for

by increasing the a priori error variance of the linear
model in that region.

The particular response of the model ocean to per-
turbations is a sensitive function of the internal struc-
ture. For illustration, Figs. 8b,c display the response of
an unforced ocean to the same perturbation as in Fig.
8a. The large differences between the realistic (Fig. 8a)
and the idealized (Figs. 8b,c) cases indicate the rich
information content of the response, as captured by a
modern GCM. The estimation recipe to be discussed
later seeks to use this information to better resolve the
internal oceanic structure from a necessarily incomplete
set of measurements.

5. State reduction

The total state dimension of the MIT GCM in the
aforementioned configuration is 1 335 852. As discussed
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earlier, the complete solution of the estimation problem
would overwhelm the most powerful computers because
of the need to store and manipulate the error covariance
matrix. To proceed, one can have recourse to methods
where the error covariance matrix is either ignored (e.g.,
nudging, Malanotte-Rizzoli and Young 1992) or not ab-
solutely necessary (e.g., the adjoint method, Marotzke
and Wunsch 1993). The alternative, which is discussed
here, is to use optimal estimation methods on a reduced
problem.

The motivation for the current work is the estimation
of oceanic climate, that is, the large or slow scales of
the variability, augmented where possible by a statistical
description of the smaller scales. The exact location and
time history of each geostrophic eddy is not required
or obtainable from existing global datasets. However, it
is assumed that a GCM driven by observed meteoro-
logical fields and constrained to consistency with the
available data can accurately simulate the large or slow
scales without having to exactly reproduce the small-
scale behavior of the ocean.

The primary purpose of the state reduction operator,
B* in (2), is to reduce the problem size to one that is
readily handled by available computing resources while
preserving sufficient resolution to characterize the pro-
cesses under study. A secondary requirement is that the
null space of the transformation be approximately dy-
namically decoupled from the range space as in (7).
Finally, the choice of B* must be guided by sampling
requirements; that is, the model state must be adequately
filtered before subsampling to avoid aliasing. The
pseudoinverse operator satisfying (4) is then obtained
using

B 5 B*T(B*B*T)21. (15)

Here, B*B*T will be invertible for any but the most
unfortunate choice of B* since the number of columns
of B* is much larger than the number of rows. Alter-
natively, the interpolation operator B can be defined
first, and B* is obtained using

B* 5 (BTB)21BT. (16)

Again, the requirement that BTB be invertible is easily
satisfied. In practice, it is more convenient to apply a
series of transformations to the model output rather than
perform the state reduction operation in one pass. For
example, one may wish to define B* as

B* 5 ,B*B*B*h y t (17)

where , , and are time, vertical, and horizontalB* B* B*t y h

operators, respectively. Pseudoinverse operators Bt, By,
and Bh can be defined as in (15), and it follows that

B 5 BtByBh. (18)

An alternative framework is provided by digital filtering
theory; B* represents a filter that removes sub-Nyquist
scales, and a sampler operating at twice the Nyquist
rate. The interpolation operator B oversamples the signal

back to the original rate and applies the same low-pass
filter to remove unwanted harmonics (see Fig. 1).

In this study, the vertical state reduction operator
maps perturbations to the same four vertical levelsB*y

as in Stammer and Wunsch (1996). Horizontal filtering
is done using a two-dimensional fast Fourier transform
(FFT) algorithm and setting to zero coefficients corre-
sponding to wavelengths shorter than 168. The resulting
fields are then subsampled at 88 intervals, both zonally
and meridionally, thus satisfying the Nyquist sampling
criterion. Temporal sampling is done at 30-day intervals.
This particular choice of , , and is one of con-B* B* B*y h t

venience and suffices for the current numerical study.
The four vertical levels are those used in section 6 to
integrate the GFDL model. The horizontal operator

and its pseudoinverse Bh can be efficiently imple-B*h
mented using FFTs without explicit evaluation or stor-
age of either matrix. No time filtering is required be-
cause the fields used in the numerical examples have
sufficiently red frequency spectra.

Alternative representations of the perturbation field
are available. Empirical orthogonal functions (EOFs)
from hydrographic casts are the preferred description
for vertical structure in ocean acoustic tomography.
Wavelets or climate model EOFs can be used horizon-
tally. Temporal filtering may be required if the processes
under study have frequency spectra that are not suffi-
ciently red to avoid aliasing. A different approach con-
sists in first defining the interpolation operator B rather
than B* (Fukumori and Malanotte-Rizzoli 1995).

In their analysis of the large-scale North Pacific cir-
culation using satellite altimetry, Stammer and Wunsch
(1996) form averages in 108 3 108 areas during 10-day
periods. The 10-day interval coincides with the repeat
cycle of the TOPEX/Poseidon altimeter. The vertical
sampling scheme consists of depth averages at the four
levels of their particular implementation of the GFDL
model: 0–100, 100–600, 600–1600, and 1600–4000 m.
This sampling scheme resolves variability due to the
propagation of large-scale baroclinic Rossby waves, but
it is unsuitable to the observation of barotropic Rossby
waves at midlatitudes. Long barotropic Rossby waves
have short periods. For example, at wavelengths greater
than 1000 km, the midlatitude period is typically less
than 23 days (Pond and Pickard 1983, section 12.10.4).

The current state reduction scheme restricts the anal-
ysis to scales larger than 168 in the horizontal and pe-
riods longer than 60 days, which is sufficient to resolve
the large-scale baroclinic response of the ocean dis-
cussed in section 4. However, the fast or short variability
caused by the propagation of barotropic Rossby waves
is eliminated. It is appropriate, therefore, to restrict the
reduced state vector to the description of density per-
turbations. Here, temperature is used as a proxy for
density, but the salt contribution can be recovered from
representative T–S diagrams or directly from the model
Green’s functions.
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FIG. 9. Response of the four-level GFDL model to a 0.058C perturbation, between 100- and
600-m depth, at the end of month 16. A two-dimensional low-pass spatial filter with cutoff
wavelength of 168 has been applied to smooth scales not resolved by the reduced-order linear
model. The heavy dot indicates the initial location of the disturbance.

6. Linearization

Two methods for deriving the state transition matrix,
A in (3), are discussed below. The first method is based
on the computation of model Green’s functions and it
is related to the method used by Fukumori and Malan-
otte-Rizzoli (1995). Model Green’s functions are defined
here as the GCM response to unit temperature pertur-
bations of the reduced state vector x(t). These pertur-
bations are introduced in the numerical model as
ByBhx(t). The response of the GCM is computed as in
section 4 for a single time step, dt equals 1 month, of
the linear model. The GCM response is then projected
back onto the reduced state vector using B* and the
resulting vector gives the column of the state transition
matrix corresponding to the perturbed element of x(t).
This computation, repeated for each element of x(t),
provides the complete state transition matrix.

For illustration, the above method is used to obtain
a state transition matrix for the North Pacific GFDL
integration of Stammer and Wunsch (1996) (see section
3b for a brief description of model configuration). Three
hundred thirty-six 30-day Green’s functions are com-
puted at the locations marked by the dots in Fig. 9 and
used to define the state-transition matrix A. Figure 9
also displays the response of the GFDL model to a
0.058C perturbation in the second model layer at the
end of month 16. The large-scale response of the GFDL

model can be compared to that of the linear model in
Fig. 10. The excellent correspondence between Figs. 9
and 10 indicates that the linear model A is able to sat-
isfactorily reproduce the large-scale response of the ful-
ly nonlinear GCM. This result needs to be tested in
eddy-resolving model configurations, but for sufficient-
ly small perturbations, we expect this result to carry
over to higher model resolutions.

A second method for obtaining A is related to the
computation of principal oscillation patterns (e.g., von
Storch 1993). Consider the response of a numerical
model to some random initial perturbation field. This
response, filtered by B*, provides a time series of the
reduced state vector x(t), which is consistent with GCM
perturbation dynamics. Right multiplication of (3) by
xT(t) and taking expectations yields the state transition
matrix

A 5 ^x(t 1 dt)xT(t)&^x(t)xT(t)&21, (19)

where it is assumed that x(t) and q(t) are uncorrelated.
This method has the advantage of being able to provide
an average linear model for the entire period under study
rather than an exact model for a particular month.

When the covariance matrix ^x(t)xT(t)& is not invert-
ible—for example, when the number of time steps avail-
able for extracting the linear model is smaller than the
dimension of x(t)—the following inverse problem,
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FIG. 10. Response of the linear model to the same perturbation as in Fig. 9: the linear model
A for a 1-month transition has been applied 16 times to the original perturbation. The excellent
correspondence with Fig. 9 indicates that the assumption of linearity for the large scales, and
dynamical decoupling between small and large scales, is satisfied in the current model config-
uration.

[x(dt) x(2dt) . . . ]

5 A[x(0) x(dt) . . . ] 1 [q(0) . . . ], (20)

can be solved for the coefficients of A. In particular,
given the slow propagation speeds of baroclinic Rossby
waves in the GCM, it is possible to obtain the reduced-
state linear model by computing the response to several
density perturbations simultaneously and then solving
(20) using a locality constraint. Equation (20) is used
to obtain the reduced-order linear model of section 7c.

7. State estimation example

In this final section we present a numerical example
of the ocean climate estimation problem making use of
the tools and ideas discussed above and providing an
opportunity to study the sensitivity of the solution to a
priori statistical assumptions. We consider a rectangular
piece of ocean in the North Pacific (108–608N, 1408–
2408E). A 4-yr integration of the Semtner and Chervin
(1992) global ocean circulation model with nominal grid
spacing of ¼8 in the horizontal and 20 levels in the
vertical is assumed to represent the real ocean. Pseudo-
tomographic and altimetric measurements are then in-
verted to recover large-scale temperature perturbations
about the mean model state. Without loss of generality,

a time-invariant system is considered in which A, E, Q,
R, and S are time independent. Vectors q(t), n(t), and
x(t) are assumed uncorrelated with each other and with
zero mean; q(t) and n(t) have zero temporal autocor-
relation. The above assumptions are a reasonable start-
ing point, given the coarse spatial and temporal reso-
lution of the reduced state vector. Nevertheless, these
assumptions must be checked for statistical consistency
with the solution.

The basic model state, in (2), is taken to be theĵ(t)
4-yr-mean, depth-integrated temperature of the Semtner
and Chervin ocean shown in Fig. 11. The signal, x(t),
consists of 30-day snapshots of temperature perturba-
tions about this 4-yr mean, filtered by operator .B*B*h y

The model contains several large-scale, westward-prop-
agating Rossby waves, which remain coherent for 2 to
3 years at a time. It is these features that, in combination
with the inverse machinery, provide the necessary in-
formation for improving estimates of oceanic climate.
Figure 12 displays the root-mean-square (rms) vari-
ability of x(t).

a. Ocean acoustic tomography

Ocean acoustic tomography (Munk and Wunsch
1979) provides time series of travel times that are in-



1432 VOLUME 14J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

FIG. 11. Four-year depth-integrated temperature mean (8C) of the Semtner and Chervin ocean. In the current
numerical example, these fields constitute the basic model state in (2).ĵ(t)

versely proportional to the integrated along-path sound
speed or, equivalently, temperature. Each transmitter–
receiver pair can resolve several ray or modal arrivals
that have different vertical sampling characteristics.
Therefore, the inversion of these arrival times provides
some degree of vertical resolution along each path.

In this study the pseudotomographic measurements,
h(t) in (8), represent the mean temperature perturbation
along each of the 13 proposed North Pacific ATOC paths
(Fig. 13) at four vertical levels: 0–100, 100–600, 600–
1600, and 1600–4000 m. One may think of these as the
result of vertical-slice inversions along each path. Figure
14 displays the rms signal EBx(t) and the noise n(t)
components of the observed difference y(t) in (10). The
simulated measurements have the highest signal-to-
noise-ratio in the surface layer, 0–100 m, due to the
seasonal heating and cooling of the mixed layer in the
model ocean. In practice, we expect poor resolution at
the surface (due to the acoustics) and a stronger signal
in the lower layers (larger deviation between modeled
and true state of the ocean).

Figure 15 shows a contour diagram of a row of matrix
EB corresponding to path 13 in Fig. 13. It represents

the measurement model for one of the cross-Pacific
ATOC paths. In effect, the measurement model is a
weighted average about that path with a decorrelation
scale imposed by the coarse representation of j(t) by
x(t). The noise term n(t) is the difference between this
weighted average and the mean temperature along the
tomographic line, that is, E(t)e(t) in (11).

b. Static inversion

A singular value decomposition (e.g., Wunsch 1996)
EB 5 ULVT is used to understand the nature of the
solution and its relationship to the data. Here, U is a
matrix whose columns span the data space y(t), V is a
matrix whose columns span the model state space x(t),
and L is a diagonal matrix of singular values. The cur-
rent estimation problem is formally underdetermined.
There are 52 singular values, and the condition number
of EB, the ratio of the largest to the smallest singular
value, is 5.9, indicating that all 52 measurements pro-
vide independent information about the perturbation
field. Consequently, the first 52 columns of V are said
to span the range space of the solution, while the re-
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FIG. 12. Standard deviation (8C) of the Semtner and Chervin ocean. Forty-six 30-day snapshots are used, and a 2D
FFT filter is applied to eliminate scales smaller than 168 in the horizontal prior to computing the standard deviation.
Most of the variability in the top layer is due to the seasonal cycle. As expected, the model variability is maximum
near the western boundary.

FIG. 13. Proposed ATOC paths in the North Pacific (B. Howe 1994,
personal communication). The paths are numbered as a function of
increasing range.

maining columns span the null space, about which no
information is provided by the measurements.

The singular value decomposition is also a convenient
way to obtain the natural solution of the estimation prob-
lem, the solution that assumes infinite a priori variance
in the range space of the solution and zero variance in
the null space. This solution is appropriate when no a
priori statistical information is available about the model
parameters and the measurements. The corresponding
model resolution matrix is Vp , where Vp is a matrixTVp

containing the first 52 columns of V. Diagonal elements
of Vp are plotted in Fig. 16.TVp

Complete lack of a priori knowledge is a very un-
realistic scenario—we know, for example, that the Pa-
cific Ocean is not about to evaporate or freeze over. This
knowledge can be expressed in the form of a cost func-
tion,

J 5 nTR21n 1 xTS21x, (21)
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FIG. 14. Standard deviation of signal (circles) and noise (asterisks) for each of the 13 North
Pacific ATOC paths as a function of transmission range. The highest signal-to-noise ratio is
achieved in the surface layer, because of the strong seasonal signal, and for the longer paths that
attenuate mesoscale noise the most.

where a sum squared of measurement residuals and
model parameters are weighted by their respective a
priori covariance matrices. We inverted the pseudo-
tomographic measurements y(t) in (10) subject to con-
straint (21) using the Gauss–Markov estimators for x
and P (e.g., Wunsch 1996). The inversions were carried
out for 46 consecutive snapshots of the Semtner and
Chervin ocean at 30-day intervals, and we considered
several different a priori R and S. The figure of merit
used to determine the success of the inversion at each
point is

1/2 2[x̂ (t) 2 x (t)]O i i 
t f 5 1 2 3 100%. (22)i 21 2[x (t)] O i

t 

This represents the explained standard deviation in per-
cent: 100% is perfect resolution, 0% means no improve-
ment, and negative numbers indicate that the solution
is worse than the a priori estimate ^x& 5 0.

Figure 17 displays the explained standard deviation
at each of the four model levels for a particular inversion
where S and R are constructed using the actual variance
of x and n (Figs. 12 and 14, respectively) but with no
information about spatial correlations (that is, with zero
off-diagonal elements). This result can be compared to
the predicted deviation based on solution uncertainty P
and shown in Fig. 18. It is significant that the actual

skill of the inversions is somewhat better than that pre-
dicted by the uncertainty matrix; that is, the error bars
provided by P are reasonable and somewhat conser-
vative.

The results of Figs. 17 and 18, as well as the results
from several other inversions using different a priori
statistical assumptions, are summarized in Table 4. A
single figure of merit is formed at each level by aver-
aging the explained standard deviation. Table 4 indicates
that the skill of the inversions is particularly sensitive
to the full and correct specification of the solution co-
variance matrix S. When S is fully specified, the in-
versions can explain up to 60% of the rms signal as
opposed to 8% with a diagonal S. The importance of
the off-diagonal elements of S relative to the off-di-
agonal elements of R is not surprising given that the
dimension of S is 512 as compared to the dimension of
R, which is 52; Therefore, S imposes 100 times more
constraints than R in (21). The importance of the off-
diagonal elements of S also indicates that there is con-
siderable spatial correlation between the elements of the
state vector, that is, the spatial spectrum of x(t) is red.
In practice, the a priori statistics can be provided by a
recent climatology of the region under study or by a
realistic GCM, but we do not expect the skill of the
inversions to ever approach that indicated by the bottom
two rows of Table 4. However, with enough data, adap-
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FIG. 15. Contour plot of measurement model for the cross-Pacific path 13 in Fig. 13. The measurement model is an
areal average of temperature with a cross-path width imposed by the coarse representation of the perturbation field. As
discussed in the text, the measurement error is taken to be the difference between this areal average and the line-
averaged temperature along the path. The contours are dimensionless and are scaled so that they represent a unit
perturbation of the corresponding measurement.

tive filter/smoother methods could be used to determine
the model and data covariances.

c. Time-dependent inversion

We use (20) and a singular value decomposition keep-
ing 25 singular values to derive the state-transition ma-
trix that is used in the numerical example below. The

time-dependent inverse solution here seeks to minimize
a weighted sum of initial conditions, measurement re-
sidual, and process noise:

T 21 T 21 T 21J 5 x (0)S x(0) 1 [n (t)R n(t) 1 q (t)Q q(t)],O
t

(23)
which is equivalent to solving the complete set of equa-
tions,

0         y(0) EB · · · O A · · · O x(0) n(0)
1 0         y(1) O EB · · · O A A · · · O q(1) n(1)

5 1 . (24)         
A 5 5 A A         

k 0y(k) O · · · EB A · · · A q(k) n(k)         

As discussed in the appendix, this equation is equivalent
to Eq. (14) in Stammer and Wunsch (1996). The filter/

smoother formalism provides an efficient sequential al-
gorithm for minimizing (23). We use the Kalman filter
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FIG. 16. Diagonal elements of the model resolution matrix for the natural solution that assumes infinite variance in
the range space of the measurements and zero variance in the null space. The amount by which the resolution differs
from 1 indicates the spread of the solution into adjacent areas.

in combination with the fixed-interval Rauch–Tung–
Striebel smoother (e.g., Gaspar and Wunsch 1989).

The sensitivity of the filter/smoother to a priori sta-
tistical assumptions was tested for several combinations
of R, Q, and S. Some results are summarized in Table
5. We find that diagonal covariance matrices are very
poor assumptions and that they degrade the estimates
compared to the static inversion. We also find that the
inversion is somewhat more sensitive to the correct a
priori specification of measurement residual R than it is
to that of process noise Q. This result is encouraging
because the correct characterization of process noise is
the most challenging task in practice.

To avoid divergence of the smoothed estimates from
the true solution for poor a priori R, S, and Q, additional
data constraints are required. In the absence of sufficient
data, an alternative approach is to require the solution
to remain within some reasonable bounds, which could
be provided by a recent climatology or otherwise. This
can be achieved by minimizing the cost function,

T 21 T 21 T T 21J 5 [x (t)S x(t) 1 n (t)R n (t) 1 q (t)Q q(t)],O
t

(25)

instead of (23). This cost function requires the solution

to remain consistent with the a priori covariance matrix
S at every time step. In the filter/smoother formalism,
it is possible to minimize (25) by adding ‘‘synthetic’’
measurements to Eq. (10),

          y(t) EB n(t)
     5 x(t) 1 , (26)     O I 2x(t)     

with error covariance matrix,

  R O R 5 . (27) s O S 

Figures 19 and 20 display results of a time-dependent
inversion using synthetic measurements for diagonal a
priori Q, R, and S. Further results are summarized in
Table 6. Clearly, the synthetic measurements vastly im-
prove estimates of the solution x(t), as compared to the
results reported on Tables 4 and 5. Unfortunately, for
wrong a priori S, this formulation tends to underestimate
the magnitude of the error covariance matrix P.

d. Satellite altimetry

The inversion methods discussed in the previous sec-
tion can accommodate most other types of measure-
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FIG. 17. Explained standard deviation in percent for a static inversion using pseudotomographic measurements: 100%
is perfect resolution, 0% means no improvement, and negative numbers indicate the solution is worse than the a priori
estimate. Diagonal a priori measurement residual, and solution covariance matrices were used. These impose the correct
variance but wrongly assume zero spatial correlation. The estimates are best in the surface layer where the measurements
have the highest signal-to-noise ratio.

ments, so long as a linear model relating the measure-
ments to the state vector x(t) can be established. The
particular case of satellite altimetry is discussed in this
section. Assuming that the large-scale perturbations of
the ocean relative to model predictions are in geostroph-
ic and hydrostatic balance, then the sea surface elevation
can be decomposed into a steric component plus an
integration constant. The integration constant is pro-
portional to the horizontal gradient of the depth-aver-
aged velocity, and to first order it is not seen by one-
way tomography. The steric component is the full-water
column integral of density perturbations, r(x, y, z, t),
producing a sea surface elevation

021
h(x, y, t) 5 r(x, y, z, t) dz, (28)Er (x, y, t)0 2H(x,y)

where H(x, y) is the depth of the water column and r0(x,
y, t) is the seawater density at the surface. For example,
a 0.58C warming of a layer between 100- and 600-m
depth with mean salinity 34.7 psu and temperature 9.68C
results in a 4.3-cm sea surface elevation (see Table 7).

The current definition of the state reduction operator B*
filters out variability due to barotropic Rossby waves
(see section 5). There remain barotropic perturbations
caused by readjustments to changing surface boundary
conditions that have not been adequately predicted by
the GCM. These become part of the measurement error,
E(t)e(t) in (11), because they cannot be resolved by the
reduced state vector.

Pseudoaltimetric measurements were constructed in
the Semtner and Chervin ocean using the values of dh/
dT from Table 7 and 1-cm rms Gaussian residuals, typ-
ical of TOPEX/Poseidon sea level anomaly error for the
large spatial and temporal scales considered here. The
results of some static and time-dependent inversion ex-
periments making use of these pseudoaltimetric mea-
surements are summarized in Table 8. The results of
these idealized experiments indicate that overall altim-
etry is the richest and most useful signal, even for the
deep levels. This is not surprising given the limited
number of tomographic integrals as compared to the
complete spatial coverage of the altimeter. Nevertheless,
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FIG. 18. Explained standard deviation predicted using the error covariance matrix P for the same experiment as that
of Fig. 17. A comparison of Figs. 17 and 18 shows that the actual skill of the inversions is, in general, better than or
similar to the predicted skill.

TABLE 4. Actual and predicted explained standard deviation for static inversions using pseudotomographic measurements. Each number
represents the mean explained deviation in percent at a particular level. A priori statistics are obtained here from the known x and n, but
off-diagonal information is withheld in some of the examples as indicated. The second row of the table (diagonal R, S) summarizes the
results of Figs. 17 and 18. Various other combinations of R and S are considered. The results improve as the a priori statistics supplied to
the inversion become more realistic. Except for the natural solution, which assumes infinite variance in the range space of the measurements,
and zero in the null space, the error covariance matrices are generally consistent with the observed error.

Explained standard deviation (%)

Level (m)

Actual

100 600 1600 4000

Predicted using P

100 600 1600 4000

Natural solution
Diagonal R, S
Full R, diagonal S
Diagnoal R, full S
Full R, S

5
18
19
67
88

212
5
8

61
87

211
5
7

57
86

212
3
5

58
86

37
6
8

70
88

36
5
7

64
87

39
5
7

61
86

39
4
7

62
85

the combination of altimetric and tomographic mea-
surements improves the overall skill of the inversions
relative to that of either measurement on its own. It
should also be pointed out that the assumption of white
noise for the altimeter measurements may be unrealistic
and that long-term climate-scale changes are unlikely
to have the linear physics assumed here. Tomographic

integrals measure temperature directly and can therefore
help to ground-truth altimetry, to diagnose ageostrophic
adjustments, and to separate the measured sea surface
elevation into barotropic and steric components. For the
reasons discussed earlier, the filter/smoother with syn-
thetic measurements outperforms the other two types of
inversions but underestimates the uncertainty of the es-
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TABLE 5. Actual and predicted explained standard deviation for filter/smoother inversions using pseudotomographic measurements. These
results can be compared with those for the static inversions reported in Table 4. The skill of the time-dependent estimates is worse than that
of the static inversions when incomplete a priori Q and R are supplied. As discussed in the text, the divergence of the estimates from the
actual solution results from insufficient data constraints.

Explained standard deviation (%)

Level (m)

Actual

100 600 1600 4000

Predicted using P

100 600 1600 4000

Diagonal R, Q, S
Diagonal R, S, full Q
Full R, S, diagonal Q
Full R, S, Q

13
24
20
96

7
20
29
97

29
5
8

96

29
11

5
96

224
0

20
90

0
15
41
92

219
1

28
90

227
25
20
86

FIG. 19. Explained standard deviation in percent for a time-dependent inversion using pseudotomographic measure-
ments. Diagonal a priori system error, measurement residual, and solution covariance matrices were used. Notice the
overall improvement as compared to the results of the static inversion of Fig. 17. As discussed in the text, the solution
is constrained to consistency with S at every time step. This overcomes the divergence problems reported in Table 5.

timates. More realistic a priori covariance matrices, in-
stead of the diagonal matrices used for constructing Ta-
ble 8, improve the results substantially.

8. Concluding remarks

The principal contributions of this study are the eval-
uation of the MIT GCM response to large-scale internal
density perturbations in a North Pacific test basin, and

the recipe for obtaining and using a reduced-order lin-
earized model to estimate ocean climate. At midlatitu-
des, the model response is that of linear baroclinic Ross-
by waves, modified by complex interactions with hor-
izontal density gradients, mean advection velocity, and,
to a lesser extent, topography (see Figs. 7 and 8). Except
near the western boundary, the model response to a
localized perturbation is essentially similar on the large
scales to that resulting from a large-scale initial pertur-
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FIG. 20. Explained standard deviation predicted using the error covariance matrix P for the same experiment as that
of Fig. 19. The predicted errors are everywhere smaller than the actual errors (the predicted skill is higher than the
actual skill of Fig. 19). This problem results from insufficient data constraints and wrong a priori statistical assumptions
in the current experiment.

TABLE 6. Actual and predicted explained standard deviation for filter/smoother inversions using pseudotomographic measurements and
constrained to consistency with S at every time step. The current estimates are considerably better than those reported in Tables 4 and 5.
However, the error covariance matrix underestimates the errors when incomplete a priori S is supplied.

Explained standard deviation (%)

Level (m)

Actual

100 600 1600 4000

Predicted using P

100 600 1600 4000

Diagonal R, Q, S
Diagonal R, S, full Q
Full R, S, diagonal Q
Full R, S, Q

41
48
93
96

17
29
94
96

17
26
93
96

14
27
93
96

67
82
96
96

72
84
96
96

69
82
96
96

67
81
96
96

bation. This result indicates that the large-scale model
response is largely decoupled from the smaller and faster
model physics.

Two methods for obtaining a reduced-order linear
model that describe the evolution of the large-scale in-
ternal density perturbations have been described. The
first method is based on the computation of model
Green’s functions and their representation in state-tran-
sition matrix form. The second is a form of principal
oscillation pattern analysis. The reduced-order linear

model compares favorably with the large-scale response
of the fully nonlinear GCM for a period of up to 2 years
(see Figs. 9 and 10). The linear model is suitable for
climate estimation studies. Numerical examples of both
static and time-dependent inversions have been pre-
sented using simulated tomographic and altimetric mea-
surements. As a result of insufficient data constraints,
the inversions are extremely sensitive to the quality of
the a priori statistical assumptions.

The following algorithmic improvements are sug-
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TABLE 7. Typical values for sea surface elevation due to large-scale temperature perturbations in hydrostatic and geostrophic balance.

Layer depths (m) 0–100 100–600 600–1600 1600–4000

Mean S (psu)
Mean T (8C)
Mean r (kg m23)
DT (8C)

34.7
14.2

1026
1.0

34.7
9.6

1028
0.5

34.7
3.6

1033
0.1

34.7
1.7

1041
0.01

Dr (kg m23)
Dh (cm)
dr/dT (kg m23 8C21)
dh/dT (m 8C21)

20.2172
2.1

20.2125
0.0207

20.0878
4.3

20.1730
0.0841

20.0127
1.2

20.1261
0.1221

20.0015
0.34

20.1477
0.3406

TABLE 8. Actual and predicted explained standard deviation for static and time-dependent inversions using pseudoaltimetric and
pseudotomographic measurements. Diagonal a priori Q, R, and S are assumed throughout.

Explained standard deviation (%)

Level (m)

Actual

100 600 1600 4000

Predicted using P

100 600 1600 4000

Static inversions
Tomography
Altimetry
Altimetry and

tomography

18
20

31

5
39

43

5
14

18

3
3

5

6
12

17

5
28

32

5
4

8

4
0

4

Filter/smoother
Tomography
Altimetry
Altimetry and

tomography

13
29

37

7
53

55

29
22

25

29
10

11

224
0

9

0
29

35

219
217

26

227
232

222

Filter/smoother with synthetic measurements
Tomography
Altimetry
Altimetry and

tomography

41
52

63

17
57

61

17
40

45

14
34

37

67
69

71

72
76

77

69
69

70

67
67

68

gested. For large-scale, low-frequency estimates of oce-
anic circulation, model Green’s functions can be ini-
tialized using internal density perturbations, instead of
vortices as in Stammer and Wunsch (1996). The former
excite a predominantly baroclinic response, have much
longer persistence, and are easier to implement numer-
ically. Because most of the energy of long planetary
waves is in potential form, the initial geostrophic ad-
justment transients can be neglected. By contrast, the
adjustment process cannot be neglected when the per-
turbations are initialized from vortices. This adjustment
adds to the computational burden of the model Green’s
functions as it may take up to a full month for the
geostrophic adjustment transients to die down. Most of
the useful information about the interior of the ocean
is contained in the baroclinic response (see Fig. 8). The
depth-integrated response, which is not excited by the
method proposed here, is predominantly a function of
bottom topography and surface wind forcing.

The state-transition matrix provides an efficient rep-
resentation of model Green’s functions. This represen-
tation substantially reduces processing and storage costs
(see the appendix). It naturally lends itself to the use of
sequential estimation algorithms. Therefore, much larg-
er inverse problems can be tackled with the same com-

putational resources. Given the slow propagation of bar-
oclinic information in the ocean, it is suggested that the
response to several perturbations can be computed si-
multaneously, thus further reducing processing require-
ments. Equation (19) or (20) is then used to obtain the
state-transition matrix.

Due to insufficient data constraints and imperfect
knowledge of a priori statistics, the estimates provided
by the time-dependent inversion can diverge from the
desired solution. A simple modification of the problem
formulation, Eqs. (25)–(27), can be used to require the
solution to remain within bounds provided by a recent
climatology or otherwise.

Important issues that have not been addressed in this
study include the optimal choice of a priori covariance
matrices for the oceanic state vector, measurement re-
siduals, and system errors. Our priorities for future work
are the application of the above ideas to real data, and
the testing of reduced-order linear models in other ba-
sins and at higher GCM resolutions.
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APPENDIX

Efficient Representation of Green’s Functions

Because of the linearity assumption, the Green’s func-
tions computed in section 4 or in Wunsch (1985) and
Stammer and Wunsch (1996) can be efficiently repre-
sented by a state-transition matrix. The model Green’s
function Gij(t) is defined as the time-evolving model
response at location i and time t caused by a unit per-
turbation at location j and time 0. Subscripts i and j can
also refer to some truncated basis set, as discussed in
section 5, and t is the corresponding time index. If the
perturbation physics of the model are approximately lin-
ear for the resolved scales, then by definition

N

G (t) 5 G (1)G (t 2 1), (A1)Oij ik kj
k51

where N is the state dimension. The state transition ma-
trix is defined as

 G (1) · · · G (1)11 1N 
A 5 A . (A2) 

 
G (1) · · · G (1)N1 NN 

Equations (A1) and (A2) yield

   G (t) G (0)1j 1j   
tA 5 A A , (A3)   

   
G (t) G (0)Nj Nj   

where Gij(0) 5 1 for i 5 j, and 0 otherwise. Therefore
Eq. (14) in Stammer and Wunsch (1996) is seen to be
equivalent to (24) in this paper. This representation of
the Green’s functions affords more than an order of
magnitude decrease in the computational cost and stor-
age requirements. The model response to each pertur-
bation needs be computed for a single time step, rather
than for the complete duration of the experiment. The
response at future time steps can then be constructed
using (A3) as shown on Figs. 9 and 10. Furthermore,
the inverse problem can now be solved sequentially us-
ing filter/smoother algorithms as was done in section 7.

Specifically, the computation of the state-transition

matrix requires integrating the GCM for a total of N
linear model time steps and the storage requirement for
A is N 2. The computation of the complete set of model
Green’s functions requires integrating the GCM for a
period of Kit f and the storage requirement isMSi

KiNtf /dt, where M is the total number of measure-MSi

ments, t f is the duration of the experiment, and dt is the
linear model time step. Here, Ki represents the number
of degrees of freedom assigned to measurement i, that
is, the number of nonzero elements for the particular
row of EB in (10) corresponding to the given measure-
ment. A separate Green’s function must be computed
for each degree of freedom. In general, point measure-
ments have a single degree of freedom, while integrating
measurements such as altimetry or tomography have
several.

For the example of section 7d, N 5 336, Ki ;MSi

800, t f 5 46 months, and dt 5 1 month. Therefore the
storage requirement for the state transition matrix is N 2

; 105 as opposed to KiNtf /dt ; 107 for the completeMSi

set of Green’s functions. The computation of the state
transition matrix requires Ndt 5 28 GCM years as op-
posed to Kit f 5 3066 GCM years for the completeMSi

set of Green’s functions.
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