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ABSTRACT

This article examines the impact of ocean state estimates generated by the consortium for 

Estimating the Circulation and Climate of the Ocean (ECCO) on the initialization of a 

Coupled General Circulation Model (CGCM) for seasonal climate forecasts. The CGCM 

consists of the University of California, Los Angeles Atmospheric GCM (UCLA AGCM) 

and of an ECCO ocean configuration of the Massachusetts Institute of Technology GCM 

(MITgcm). The forecasts correspond to ensemble seasonal hindcasts for the period 1993–

2001. For the forecasts, the ocean component of the CGCM is initialized in either early 

March or in early June using ocean states provided either by an unconstrained forward 

ocean integration of the MITgcm (the “baseline” hindcasts) or by data-constrained ECCO 

results (the “ECCO” hindcasts). Forecast skill for both the baseline and the ECCO 

hindcasts is significantly higher than persistence and compares well with the skill of other 

state-of-the art CGCM forecast systems. For March initial conditions, the standard errors 

of Sea Surface Temperature (SST) anomalies in ECCO hindcasts (relative to observed 

anomalies) are up to 1º C smaller than in the baseline hindcasts over the central and 

eastern equatorial Pacific (150ºW-120ºW). For June initial conditions, the errors of 

ECCO hindcasts are up to 0.5º C smaller than in the baseline hindcasts. The smaller 

standard error of the ECCO hindcasts is, in part, due to a more realistic equatorial 

thermocline structure of the ECCO initial conditions. This study confirms the value of 

physically-consistent ocean state estimation for the initialization of seasonal climate 

forecasts.
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1. Introduction

On time scales longer than one week, most of the memory of the coupled ocean-

atmosphere system resides in the ocean. The successful prediction of the oceanic 

evolutions, therefore, is key for the success of long-range forecasts of El Niño-Southern 

Oscillation (ENSO) with Coupled atmosphere-ocean General Circulation Models 

(CGCMs) models (e.g., Rosati et al. 1997, Goddard et al. 2001). The initial oceanic 

conditions in these forecasts are usually obtained by application of a data assimilation 

system. For example, Behringer et al. (1998) describe a prediction system that assimilates 

temperature profiles from the Tropical Atmosphere Ocean (TAO) array using the 

approach of Derber and Rosati (1989). Ming et al. (2000) extend this methodology to 

include TOPEX/POSEIDON sea surface height data. Other examples of ocean data 

assimilation systems used to initialize ENSO predictions are given by Kirtman (2003), 

Wang et al. (2002), and Segschneider et al. (2001). The consensus is that the quality of 

oceanic initial conditions can have a significant impact on the success of ENSO 

predictions with CGCMs. For this, and for other reasons, several projects have been 

established with the objective of obtaining increasingly more accurate descriptions of the 

time evolving ocean circulation. One such effort is the consortium for Estimating the 

Circulation and Climate of the Ocean (ECCO). This paper evaluates the impact of ECCO 

initial conditions on the skill of seasonal climate forecasts by a CGCM.

The ECCO consortium was established in 1999 with support from the National 

Oceanographic Partnership Program (NOPP) in order to demonstrate the practicality and 

utility of state estimation for global-scale physical oceanography. The principal partners 

of the ECCO project (1999-2005) were the Massachusetts Institute of Technology (MIT), 

the Scripps Institution of Oceanography (SIO), and NASA’s Jet Propulsion Laboratory 
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(JPL). A distinguishing feature of ECCO ocean state estimates is their physical 

consistency. Estimates are obtained by least-squares fit of the MIT general circulation 

model (MITgcm) to the available observations; the estimates satisfy the model’s time-

evolution equations, budgets of fluid properties are balanced, there are no discontinuities 

when new data are inserted, and error covariance is propagated through the same physical 

model as the state vector, hence more fully utilizing the available data. The demonstration 

solutions obtained by ECCO still have several shortcomings, which are being addressed 

as part of ECCO-follow-on projects. Nevertheless, these demonstration solutions have 

proved scientifically useful for a large number of oceanographic and interdisciplinary 

studies on topics such as the ocean general circulation (e.g., Stammer et al. 2003; Gebbie 

et al. 2004), biogeochemical cycles (e.g., McKinley et al. 2003), air-sea fluxes (e.g., 

Stammer et al. 2004), subgrid scale parameterizations (e.g., Ferreira et al. 2005), and 

geodetic studies (e.g., Gross et al. 2004). 

Dommenget and Stammer (2004) used ECCO ocean state estimates to initialize seasonal 

climate hindcasts and reported that initial ocean conditions and forcing corrections 

calculated by ocean-state estimation have a positive impact on ENSO predictive skill. 

Hindcast skills in that study, however, are limited by the use of a statistical atmosphere 

and by the coarse horizontal resolution of the ocean model, which has 2º horizontal grid 

spacing. In the present study we obtain short-term climate hindcasts using a CGCM that 

comprises the University of California, Los Angeles Atmospheric GCM (UCLA AGCM) 

coupled to a quasi-global ocean configuration of the MITgcm that has 1/3-degree 

meridional grid spacing at the Equator. In a separate study, experimental climate 

forecasts are also being attempted using the same MITgcm configuration, coupled to the 

National Centers for Environmental Prediction (NCEP) Atmospheric Global Spectral 
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Model (Yulaeva, Kanamitsu, and Roads, 2007). Here, our specific objective is to 

compare seasonal ENSO hindcasts in which the ocean component is initialized using 

states from (i) an unconstrained baseline simulation of the MITgcm and (ii) a data-

constrained solution provided by the ECCO project.

The remainder of this article is organized as follows. Section 2 describes the baseline 

MITgcm integration and the constrained ECCO solution that are used to initialize CGCM 

hindcasts. Section 3 describes the selected UCLA AGCM configuration and presents 

results from a 41-year-long integration of this AGCM coupled to an ECCO ocean 

configuration of the MITgcm. Section 4 discusses results from experimental forecasts 

obtained using the above CGCM during the 1993–2001 period. Section 5 compares these 

results to hindcasts from other state-of-the-art CGCM ENSO prediction systems. 

Summary and concluding remarks follow in Section 6.

2. Baseline and optimized ECCO solutions 

The ECCO solution used in the Dommenget and Stammer (2004) study was computed 

using a quasi-global (80°S to 80°N) configuration of the MITgcm (Marshall et al., 1997) 

with 2° horizontal grid spacing, both in latitude and in longitude, and with 23 vertical 

levels. To better resolve equatorial processes the present study uses an ECCO/MITgcm 

configuration and solution with enhanced horizontal and vertical resolutions. The ocean 

model configuration is the one used for a quasi-operational analysis, which is maintained 

at JPL. The analysis is updated approximately once per week, it is freely available 

(http://ecco.jpl.nasa.gov), and it is being used for a variety of science applications (e.g., 

Lee et al. 2002; Dickey et al. 2002; Lee and Fukumori 2003; McKinley et al. 2003; Gross 
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et al. 2003, 2004; Fukumori et al. 2004; Wang et al. 2004a, b; Kim et al. 2004). The 

specific ECCO/JPL ocean model configuration and the particular baseline and optimized 

ECCO solutions used in this study are described next. 

a. Baseline MITgcm integration 

The ECCO/JPL near-real-time analysis is based on a quasi-global (73°S to 73°N) 

configuration of the MITgcm with a horizontal grid that has 360 and 224 zonal and 

meridional grid cells, respectively. Zonal grid spacing is 1° of longitude. Meridional grid 

spacing is 0.3° of latitude within 10° of the Equator and increases to 1° latitude poleward 

of 22°N and of 22°S. The model configuration has 46 vertical levels; the levels are 10-m-

thick in the top 150 m; below that, level thicknesses gradually increase to a maximum of 

400 m near the bottom; the maximum model depth is 5815 m. The bathymetry is based 

on ETOPO5 (Data Announcement 88MGG-02, Digital relief of the Surface of the Earth, 

NOAA, National Geophysical Data Center, Boulder, Colorado, 1988). The model 

employs the K-Profile Parameterization (KPP) vertical mixing scheme of Large et al. 

(1994) and the isopycnal mixing schemes of Redi (1982) and of Gent and McWilliams 

(1990) with surface tapering as per Large et al. (1997). Laplacian diffusion and friction 

are used, except that horizontal friction is biharmonic. Lateral boundary conditions are 

closed. No-slip bottom, free-slip lateral, and free surface boundary conditions are 

employed. Surface freshwater fluxes are applied as virtual salt fluxes. Isopycnal 

diffusivity and isopycnal thickness diffusivity is 500 m2 s-1. Vertical diffusivity is 5×10-6

m2 s-1. Horizontal and vertical viscosities are 1013 m4 s-1 and 10-4 m2 s-1, respectively.

The baseline integration was carried out in two steps by the ECCO/JPL group. In a first 

step the model was integrated for ten years from zero initial velocities and from initial 

temperature and salinity conditions obtained from the National Oceanographic Data 
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Center (NODC) World Ocean Atlas 1998 (WOA98); surface forcing was from a mean 

seasonal cycle computed for the period 1980-1997 from the NCEP meteorological 

reanalysis (Kistler et al. 2001). In a second step the model was integrated from January 

1980 to present starting from initial conditions corresponding to the end of Step 1 and 

forced at the surface with 12-hourly wind stress and daily heat and freshwater fluxes, 

which were obtained from the NCEP meteorological reanalysis with following 

modifications: (i) the 1980 to 1997 time-mean fluxes were subtracted and replaced with 

the 1945 to 1993, time-mean, Comprehensive Ocean-Atmosphere Data Set (COADS) 

fluxes (Woodruff et al. 1998); (ii) the 1945 to 1993 time-mean COADS heat and 

freshwater fluxes were further adjusted so that they have zero mean over the model 

domain; (iii) Sea Surface Temperature (SST) was relaxed to NCEP SST using the 

formulation of Barnier et al. (1995); (iv) shortwave is depth-penetrating using the formula 

of Paulson and Simpson (1977); (v) any model temperature that becomes less than -1.8°C 

is reset to -1.8°C in order to simulate the freezing of sea-water; and (vi) Sea Surface 

Salinity (SSS) is relaxed to monthly mean SSS from WOA98 with a relaxation constant 

of 60 days. A formal justification of above choices is beyond the scope of present 

manuscript. Suffice to say that they were the result of dozens of trial-and-error 

experiments over the course of several years by a handful of experienced physical 

oceanographers.  Furthermore, all of the above choices were later adjusted using data 

constraints, as is described next.

b. Data-constrained ECCO solution 

We use in this study the so-called smoothed wind-driven ECCO/JPL solution (available 

at http://ecco.jpl.nasa.gov/cgi-bin/nph-dods/datasets/dr049f/). The data used to constrain 

the baseline integration are observations of sea surface height and a collection of vertical 
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temperature profiles. Sea surface height data are from the National Aeronautics and 

Space Administration Goddard Space Flight Center (NASA GSFC) Pathfinder 

Topographic Ocean Experiment (TOPEX)/Poseidon Altimetry Version 9.1 

(http://podaac.jpl.nasa.gov). Specifically, colinear sea surface height data are used, which 

are georeferenced to a specific ground track and are given at 1-s intervals, approximately 

every 6 km along each track. The data are corrected for all known geophysical, media, 

and instrument effects, including tides and atmospheric loading. The Pathfinder 

information is further bin-averaged along each track, consistent with the model 

resolution. Vertical temperature profile data from expendable bathythermographs 

(XBTs), from the Tropical Atmosphere Ocean (TAO) array, and from the Argo global 

array of free-drifting profiling floats are processed, quality checked, and made available 

by D. Behringer (2002, personal communication). These data are complemented with 

temperature profiles from the World Ocean Circulation Experiment (WOCE), from the 

Hawaii Ocean Time Series (HOTS), from the Bermuda Atlantic Time Series (BATS), 

and from Profiling Autonomous Lagrangian Circulation Explorer (PALACE) floats. The 

temperature data are bin-averaged inside each model grid box and for 10-day intervals. 

The constrained ECCO/JPL analysis is obtained in two steps. In a first step, the Green's 

function approach of Menemenlis et al. (2005) is used to calibrate the model's internal 

mixing parameters, the initial temperature and salinity conditions, the SST and SSS 

relaxation coefficients, and the time-mean surface wind stress. Of particular importance 

for the Equatorial thermocline structure is the vertical diffusivity parameter, which is 

increased from 5×10-6 m2 s-1 to 15×10-6 m2 s-1. In a second step, the approximate Kalman 

filter and the smoother of Fukumori (2002) are used to correct residual adiabatic time-

dependent errors. A detailed comparison of the baseline and data-constrained solutions is 
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in Menemenlis et al. (2005). In reference to observations, the data-constrained solution 

has significantly less bias and drift and explains 10% to 30% more variance than the 

baseline integration. The bias reduction of the constrained ECCO/JPL solution is most 

significant at the base of the equatorial thermocline (compare Figs. 13c and 13e in 

Menemenlis et al. 2005). To a large extent this is the result of vertical diffusivity being 

too weak in the baseline integration, hence resulting in a thermocline that is too sharp and 

too shallow relative to data. Section 4 further discusses and analyzes these differences 

and their consequences.

3. Description of the UCLA/MIT CGCM

The CGCM used in this study comprises the optimized MITgcm ocean model 

configuration described above, which is coupled to the UCLA AGCM described next. 

a. UCLA AGCM

The UCLA AGCM is a finite difference model that integrates the primitive equations of 

the atmosphere. The model’s horizontal and vertical discretizations are arranged as “C” 

and Lorenz grids, respectively. The parameterizations of the major physical processes 

include solar and terrestrial radiation calculations according to Harshvandan et al. (1987 

and 1989, respectively), and the cumulus convection scheme of Arakawa and Schubert 

(1974) as revised by Pan and Randall (1994). The UCLA AGCM configuration used in 

this study has 15 vertical layers and has horizontal grid spacing of 5o in longitude and 4o

degrees in latitude.

The quality of simulated surface fluxes of momentum, of latent and sensible heat, and of 

water vapor mass exchanged between the atmosphere and the underlying surface are of 
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crucial importance for the success of CGCM simulations. Those fluxes are provided by 

the parameterization of the Planetary Boundary Layer (PBL) processes of the AGCM; 

this parameterization also provides PBL cloudiness. PBL clouds strongly influence 

surface radiation fluxes and hence the predicted SSTs (Ma et al. 1996, Mechoso et al. 

2000). The AGCM version used in this paper has a revised PBL parameterization (Konor 

and Arakawa 2005), in which Turbulent Kinetic Energy (TKE) vertically averaged 

through the PBL is a prognostic variable, which is used for the computation of surface 

fluxes of moisture, sensible heat, and momentum. TKE is also used for an explicit 

formulation of the mass entrainment rate at the top of the PBL following Randall and 

Schubert (2004). The new parameterization allows for several layers within the PBL and 

hence for vertical wind shears and for departures of thermodynamic variables from well-

mixed vertical profiles. In the present paper we use an intermediate stage of development 

of this parameterization that uses the new formulation of surface fluxes and mass 

entrainment rate at the top of the PBL but that considers the PBL to be well mixed.

b. Results from a multi-decadal integration of the UCLA/MIT CGCM

The MITgcm ocean model and the UCLA AGCM have been coupled using both the 

UCLA Earth System Model (ESM) and the Earth System Modeling Framework (ESMF) 

couplers. The MITgcm is configured as described in Section 2 and it is coupled to the 

version of the UCLA AGCM described above without any flux correction. In this section 

we evaluate the performance of this CGCM through analysis of selected results from a 

41-year-long integration, which is initialized from conditions corresponding to January 

10 of long, uncoupled simulations of the two component models.

Figures 1a and 1b show, respectively, simulated and observed annual mean SST. The 

verification data set is a 1971–2000 climatology from the NOAA Extended 
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Reconstructed SST, as provided by the NOAA-CIRES ESRL/PSD Climate Diagnostics 

Branch, Boulder, Colorado, USA (http://www.cdc.noaa.gov). Figure 1c shows the 

difference between simulated and observed fields. The simulated zonal SST gradient in 

the equatorial Pacific is approximately 4ºC, which compares well to the observed SST 

gradient of approximately 5ºC. The simulation reproduces the cold tongue in the tropical 

eastern Pacific and realistically captures its asymmetry with respect to the equator. In the 

Equatorial Atlantic, the zonal SST gradient has the correct sign; this is a particularly 

difficult task for non-flux corrected models (De Witt 2005; Davey et al. 2002). The 

simulated magnitude of the gradient, however, is approximately half of the observed 

gradient. In the Tropical Southern Pacific and Atlantic Oceans, the simulated warm pool 

extends too far to the east, as is also the case for precipitation (not shown). The model, 

therefore, shares with others the simulation of a spurious double Intertropical 

Convergence Zone (ITCZ) (Mechoso et al. 1995). The simulated SST in the Eastern 

Equatorial Pacific is approximately 1ºC colder than the observations. Model errors along 

the eastern coasts of the tropical oceans, however, are small. 

To assess the capability of this coupled model to simulate the interannual variability of 

the Equatorial Pacific, Hovmöller diagrams of monthly mean SST and zonal wind stress 

anomalies averaged between 4ºS and 4ºN are shown in Figs. 2a and 2b, respectively. The 

Fig.-2 anomalies exhibit ENSO-like characteristics, with weaker and stronger trade winds 

associated with warm and cold SST anomalies, respectively. As in the observations, the 

strongest SST anomalies usually appear in the Eastern Pacific during the boreal winter. 

The simulated ENSO-like signal in the 41-year simulation has a period between 3 and 7 

years and amplitude of 1ºC to 2ºC. The location of strongest wind stress anomalies tends 

to be shifted westward with respect to the strongest SST anomalies, as is typically 



12

observed during ENSO episodes. Correlations between simulated SST in the Niño 3.4 

region (120ºW-170ºW, 5ºS-5ºN) and Sea Level Pressure (SLP) provide a quantitative 

evaluation of the CGCM’s ability to reproduce observed associations between oceanic 

and atmospheric anomalies. Figure 3 shows such correlations for the November–

December period, when ENSO tends to peak, for the simulation (Fig. 3a) and for 

observed Niño 3.4 SST versus NCEP reanalysis SLP (Fig. 3b). The simulated Southern 

Oscillation pattern (Fig. 3a) is comparable with that computed from observation (Fig. 3b). 

AchutaRao and Sperber (2002) describe the simulation of ENSO by 17 global CGCMs 

from the Coupled Model Intercomparison Project (CMIP). The simulations are 80-year 

long and about half of the models do not apply flux correction algorithms. Flux-corrected 

models produced a better simulation of the annual cycle of the temperature field in the 

Equatorial Pacific but not necessarily a better simulation of ENSO variability. A few of 

the CMIP models simulate the SST variability in the equatorial eastern Pacific with 

realistic amplitude but in many CMIP models ENSO tends to occur at a higher frequency 

than in the observation. While a few of the CMIP models have Walker cell anomalies 

associated with ENSO that compare well with the observations, many of the CMIP 

models have Walker cell anomalies that are shifted to the west or are too weak. The 

interannual variability of the CGCM simulation used in this study shares positive aspects 

with some of the more realistic CMIP models, for example, irregular ENSO-like 

variability and realistic geographical patterns of Walker cell anomalies associated with 

ENSO. Earlier versions of the UCLA AGCM coupled with a regional Pacific 

configuration of the Geophysical Fluid Dynamics Laboratory (GFDL) ocean model also 

showed ENSO-like variability with realistic features (Yu and Mechoso 2001, Mechoso et 



13

al. 2000). The CGCM version used here, however, has smaller errors in surface heat 

fluxes (not shown) and a less pronounced double ITCZ.

Wang et al. (2005) introduced a new version of the NCEP coupled forecast system 

model, in which the operational version of the NCEP global forecast system model is 

configured at a relatively high resolution (T62 in the horizontal and 64 layers in the 

vertical) and is coupled with the Modular Ocean Model (MOM) version 3 without flux 

corrections. A 32-year simulation of this CGCM shows ENSO variability with realistic 

features, which indicates that the model is suitable for real-time ENSO prediction. The 

UCLA CGCM simulation presented here has a larger negative SST bias at the Equator 

and a larger double ITCZ bias than the results presented by Wang et al. (2005). 

Nevertheless, it has a smaller SST bias in the stratocumulus region of the Southeastern 

Tropical Pacific despite the coarser resolution.

4. Experimental forecasts 

In this section we discuss various hindcasts obtained by the UCLA/MIT CGCM just 

described. We produced four sets of 15-month-long ensemble hindcasts during the 1993 

to 2001 period. Two sets of hindcasts were initialized on, respectively, March-5 and 

June-5 of each year using oceanic conditions obtained from the baseline MITgcm 

simulation described in Section 2a. Hereinafter we refer to these ensemble-hindcasts as 

“baseline hindcasts”. Two more sets of hindcasts were initialized on March 5 and on June 

5 of each year using oceanic conditions from the ECCO solution described in Section 2b. 

Hereinafter we refer to these ensemble-hindcasts as “ECCO hindcasts”. For each 

different set of oceanic initial condition, 5 ensemble members were computed, each 
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initialized with slightly different atmospheric initial conditions. The atmospheric initial 

conditions are taken from a long uncoupled simulation with climatological SSTs. The 

choice of early-March and early-June initial conditions allows comparing hindcasts 

before and after the spring predictability barrier, which occurs around April.

Next we discuss some aspects of the simulated mean temperature fields in the Pacific 

Ocean for each of the hindcast sets. Figure 4 shows vertical temperature sections 

averaged between 2ºS and 2ºN in the Pacific Ocean for the mean 1993–2001 initial 

conditions of each set. The baseline initial conditions for March 5 (Fig. 4b) have a 

thermocline that is sharper, shallower, and less realistic than the equivalent ECCO initial 

conditions, in agreement with the results of Menemenlis et al. (2005). Baseline initial 

conditions for June 5 also show a sharper thermocline than the equivalent ECCO initial 

conditions, although less so than for March. 

Departures of these mean initial conditions with respect to the UCLA/MIT CGCM 

climatology produce a short-term mean bias that can span part or all of the hindcast 

duration. Figure 5 shows the difference between the mean initial conditions shown on 

Fig. 4 and the corresponding March or June CGCM climatology. The CGCM climatology 

is defined as the average over the 41-year CGCM simulation period described in Section 

3. For all the sets of initial conditions we find a cold bias with respect to CGCM 

climatology in the thermocline region, which corresponds to a deeper thermocline in the 

CGCM climatology than in the initial conditions. This bias in the initial conditions leads 

to a cold SST bias with respect to the CGCM climatology in the eastern and central 

Equatorial Pacific for the December–February (DJF) hindcast period (Fig. 6). 

Hereinafter, in order to reduce the impact of CGCM drift in response to initialization 
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bias, we examine anomalies obtained by subtracting from the hindcast results of each set 

the 1993–2001 ensemble mean of all hindcast members in that set.

Figures 7a and 7b show the skill in the prediction of mean SST for the DJF period of 

ECCO and baseline hindcasts initialized during the preceding March 5. Figure 7c shows 

skill of the persistence forecast, which is defined as the March SST anomaly. Skill is here 

defined as the correlation of predicted versus observed SST anomalies in the 1993 to 

2001 hindcasting period. Contours above 0.6 and below −0.6 are displayed, which 

correspond to values with a 95% statistical significance level according to the Student-t 

test for 9 degrees of freedom. The skill of both ECCO and baseline hindcasts in the 

equatorial region is rather high, with values around 0.8. The corresponding skill of 

persistence hindcasts is much lower. Figures 7d-f are similar to Figs. 7a-c, except that 

hindcasts are initialized on June-5 and the persistence hindcast is defined as the June SST 

anomaly. Here again, the skill of both ECCO and baseline hindcasts are quite high, with 

values around 0.90. The skill of persistence hindcasts initialized in June (Fig. 7f) is much 

higher than that of persistence hindcasts initialized in March (Fig. 7c) due to the spring 

predictability barrier.

Figures 8a, b, and c show the standard error of ECCO, baseline, and persistence hindcasts 

initialized on March-5 for predicting DJF SST. Standard error is defined as the root-

mean-square difference between predicted and observed SST anomaly. Figure 9a shows 

the difference of Fig. 8b minus Fig. 8a, that is, the amount of standard error reduction 

when the hindcasts are initialized with ECCO rather than with baseline initial conditions 

for March-5. Shaded areas correspond to values that are statistically significant at the 

95% confidence level. Statistical significance in this case was estimated through a Monte-

Carlo two-side test, in which differences of standard error between 1000 random 
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combinations of sets of 9 ECCO and baseline hindcasts are considered. Figures 8d, e, and 

f, and Fig. 9b show the corresponding results for hindcasts initialized on June. For 

hindcasts initiated in March, the standard errors are 0.25ºC to 1ºC larger for the baseline 

hindcasts than for the ECCO hindcasts in the central to eastern Equatorial Pacific. 

Persistence hindcasts show even larger errors, with values as high as 2ºC over most of the 

Equatorial Pacific (Fig. 8c). For the hindcasts initialized in June, the comparison between 

standard errors for ECCO, baseline, and persistence predictions give qualitatively similar 

results but the differences have smaller magnitude than for the hindcasts initialized in 

March. 

Figure 10 shows the evolution in time of hindcast skill for the Niño 3.4 region for CGCM 

integrations initialized on March-5 (upper panel) and on June (lower panel). The skill of 

both ECCO and baseline hindcasts remains high for almost a full year. The skill of 

persistence hindcasts initialized in March decreases to very low values after May of the 

same year while the skill of persistence hindcasts initialized in June remains high (around 

0.9) until April of the following year. Figures 11a and 11b show Niño-3.4 standard error 

for CGCM integrations initialized on, respectively, March 5 and June 5. As was the case 

for skill and standard error maps for DJF in Figs. 7 and 8, the standard error in the Niño 

3.4 region (Fig. 11) is substantially less for the ECCO than for the baseline hindcasts 

although Niño 3.4 skills are similar (Fig. 10). The standard error of the baseline hindcasts 

initialized in March is larger than that of the ECCO hindcasts by up to 0.5ºC, while the 

standard error of the baseline hindcasts initialized in June is larger than that of the ECCO 

hindcasts by up to 0.25ºC. 

To check whether the increased standard error of the baseline hindcasts is due to 

increased intra-ensemble forecast spread, Fig. 12 shows the intra-ensemble standard 
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deviation of DJF SST for each hindcast set. Standard deviation is computed for the five 

ensemble members in each year and then averaged through the 1993–2001 period. Intra-

ensemble dispersion is similar for the ECCO and for the baseline hindcasts that are 

initialized in March; the ECCO hindcasts initialized in June have slightly smaller 

dispersion than the corresponding baseline hindcasts.  Additionally the forecast spread of 

the baseline hindcasts (Figs. 12b and d) is approximately half the standard error of the 

baseline hindcasts (Figs. 8b and e). In summary, the ECCO and the baseline hindcasts 

have comparable skill in the prediction of SST anomalies and similar intra ensemble 

dispersion but differ significantly in terms of standard errors, especially for the hindcasts 

initialized on March-5. Therefore intra-ensemble variability does not fully account for the 

increased standard error of the baseline hindcasts relative to the ECCO hindcasts.

The ECCO and the baseline hindcasts differ only in the oceanic initial conditions. To gain 

insight on the structure of these initial differences, we examine the interannual standard 

deviation of the March-5 ECCO and baseline initial conditions in the Equatorial Pacific. 

Figures 13a and 13b show the standard deviation of the interannual anomalies for the 

March-5 ECCO and baseline initial conditions. We conjecture that since the anomalous 

vertical displacement of regions of high vertical gradient results in large temperature 

anomalies, the standard deviation of the baseline initial conditions is larger than that of 

the ECCO initial conditions because the baseline initial conditions have a sharper mean 

thermocline (cf. Fig. 4a and 4b). This difference is up to 1ºC at the base of the 

thermocline in the central-to-eastern Equatorial Pacific (Fig. 13c). Figure 14 shows 

vertical sections of baseline temperature standard deviation minus ECCO temperature 

standard deviation in the Equatorial Pacific Ocean for hindcasts initialized on March 5 for 

the periods March-to-May (Fig 14a), June-to-August (Fig. 14b), September-to-November 
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(Fig. 14c) and December-to-February (Fig. 14d). As for the initial conditions, the 

baseline hindcasts have larger interannual anomalies than the ECCO hindcasts. Based on 

this evidence, we hypothesize that the unrealistically sharp and shallow equatorial 

thermocline in the baseline initial conditions leads to hindcasts that have unrealistically 

large SST variability among realizations. For example, the standard deviation of DJF 

Niño 3.4 SST from 1993 to 2001 is 1.30ºC for observations, which is comparable to 

1.26ºC for ECCO hindcasts initialized in March. By way of contrast, the standard 

deviation of DJF Niño 3.4 SST from 1993 to 2001 is 1.79ºC for baseline hindcasts 

initialized in March. Note that the larger interannual standard deviation for the baseline 

hindcasts set does not necessarily reflect on the intra-ensemble standard deviation, as 

shown in Fig. 12. This is because the interannual standard deviation of the hindcast 

simulations is associated with the interannual variability of the initial conditions sets, 

while intra-ensemble standard deviation is linked with the CGCM’s sensitivity to 

perturbations in the initial conditions.

In order to complete the assessment of the forecast system performance, we also carry out 

a preliminary evaluation of the skill of probability hindcasts. Since sample size is rather 

limited, we define two categories ― (i) SST above and (ii) SST below the median ― and 

focus on the Niño-3.4 index during the DJF period. We compute the DJF median of this 

index using all integrations in each hindcast set and we estimate the probability of the 

Niño-3.4 index to be above the median in any given year as the proportion of ensemble 

members, out of the five ensemble members in each year, above the median of the entire 

set. Brier skill scores (Wilks 1995) of these predictions are shown in Table 1. The 

reference score refers to a climatological hindcast of probability 0.5, which correspond to 

a Brier skill score of 0.25. Brier skill scores for hindcasts initialized in June are 
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statistically significant above the 95% level, both for the ECCO as well as for the 

baseline hindcasts. Here, statistical significance is estimated by using a Monte-Carlo test 

of 1000 realizations. In each realization probability hindcasts are issued for each year 

from 1993 to 2001 by taking five random binary choices. Brier skill score for ECCO 

hindcasts initialized in March is also significant above the 95% level. Brier skill score for 

baseline hindcasts initialized in March, however, is not significant at the 95% level. An 

important contribution to the poorer performance of the baseline hindcasts initialized in 

March is the failure of the hindcasts during two years with small anomalies, 1996 and 

2001. Although categorical forecasts for a larger number of categories may be of help in 

such situations, this would require larger hindcast ensembles than were available for this 

study.

5. Comparison to other CGCM ENSO prediction systems

In this section we compare the ECCO and the baseline hindcasts just described to some 

state-of-the-art CGCM SST forecast systems, in which the atmospheric and oceanic 

GCMs are coupled without flux corrections. Palmer et al. (2004) describe the 

Development of a European Multimodel Ensemble system for seasonal to inTERannual 

prediction (DEMETER). Ensemble predictions from several coupled models are 

combined into a multi ensemble forecast. Ensemble hindcast results from individual 

model components of DEMETER are also made available. For comparison purposes we 

use results from one of these models, the European Centre for Medium Range Weather 

Forecasts (ECMWF) coupled ocean-atmosphere forecast system. A description of this 

coupled model is in Segschneider et al. (2001). DEMETER hindcasts are initialized in 

February, May, August, and November. 



20

De Witt et al. (2004a, b) use both the ECMWF-Hamburg (ECHAM) model version 4.5 

and the Center for Ocean–Land–Atmosphere (COLA) version 2 AGCMs, coupled with 

the MOM version 3 OGCM, hereinafter referred to as the ECHAM/MOM and the 

COLA/MOM CGCMs. The ocean initial conditions are taken from the ocean data 

assimilation system of Derber and Rosati (1989), which is maintained at the Geophysical 

Fluid Dynamics Laboratory (GFDL). Hindcasts are initialized in April (De Witt et al. 

2004a) and in July (De Witt et al. 2004b) for the years 1982 to 2003. 

Saha et al. (2006) present results from the Climate Forecast System (CFS), which is 

operational at NCEP. The CFS consists of the NCEP Global Forecast System (GFS) 

atmospheric model (Moorthi et al. 2001) with a spectral T62 truncation and with 64 

levels in the vertical, coupled with the MOM version 3 OGCM. The ocean initial 

conditions are provided by the Global Ocean Data Assimilation System (GODAS) 

described in Behringer et al. (2005). Hindcasts are initialized during each month from 

1982 to 2003 and the results are publicly available. For comparison purposes, we only 

consider hindcasts initialized in March and in June.

Table 2 shows the skill and standard error for 6-months-lead hindcasts of the Niño-3.4 

SST anomaly index for the hindcasts produced by the systems described in the previous 

paragraphs (ECMWF, ECHAM/MOM, ECHAM/COLA, and NCEP CFS) and for the 

ECCO and baseline hindcasts presented in section 4 of this work.  Figure 15 summarizes 

the time lead evolution of hindcast skill and of standard error for the subset of above 

forecast systems for which hindcast data is readily available. Overall, ECCO hindcasts 

initialized in March perform slightly better than ECMWF hindcasts initialized in 

February while the NCEP CFS hindcasts initialized in June and the ECMWF hindcasts 

initialized in May perform slightly better than the ECCO hindcasts initialized in June. 



21

Table 1 and Fig. 5 show that despite the small number of hindcast elements and despite 

the coarse resolution of the UCLA AGCM configuration, which were used in this 

preliminary study, the ECCO hindcasts can be of comparable or better quality than 

hindcasts from state-of-the-art forecast systems.

6. Summary, discussion, and concluding remarks 

This study evaluated the impact of ocean state estimates generated by the ECCO project 

on the initialization of a CGCM for seasonal climate forecasts of ENSO. Hindcasts were 

obtained with a CGCM consisting of the UCLA AGCM coupled without flux corrections 

to the MITgcm ocean model. In a 41-year simulation, this UCLA/MIT CGCM 

demonstrates an ability to realistically capture key features of the tropical climate. For 

example, the strength of the equatorial SST gradient in the Pacific Ocean is comparable 

with observations. Also, the cold tongue in the eastern Equatorial Pacific has a strong 

asymmetry with respect to the Equator, as observed. The simulation produces interannual 

SST anomalies in the equatorial Pacific that resemble ENSO, including the known 

association between wind stress and SLP anomalies. 

Forecast skill for this CGCM was evaluated using a series of ensemble-hindcast 

experiments. Hindcasts in each ensemble are initialized either in early March or in early 

June for the years 1993–2001 and integrated for 15 months. The oceanic initial conditions 

are provided by the ECCO analysis and by a baseline simulation of the uncoupled 

MITgcm ocean model. The atmospheric initial conditions are taken from a long 

uncoupled simulation with climatological SSTs. Both the ECCO and the baseline 

hindcasts initialized in either March or in June have high skill. For the Niño 3.4 SST 

anomaly index, this is approximately 0.8 and 0.9 for March and for June initial 

conditions, respectively, for time leads up to 9 months (Fig. 10). Standard error for SST 
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anomaly in the DJF period for hindcasts initialized in March is approximately 0.7ºC and 

1.1ºC for, respectively, ECCO and baseline initial conditions (Figs. 11a). For hindcasts 

initialized in June, standard SST anomaly error is approximately 0.5ºC and 0.6ºC for, 

respectively, ECCO and baseline initial conditions (Figs. 11b). 

SST anomaly persistence hindcasts initialized in June show a skill for the whole Niño 3.4 

region comparable to that obtained with the ECCO and with the baseline hindcasts (Fig. 

10b). SST persistence hindcasts initialized in March, however, show negligible skill for 

time leads larger than two months, unlike the corresponding ECCO and baseline 

hindcasts, which continue to have relatively high skill (>0.8) until the following June 

(Fig. 10a). This suggests that during March, both the ECCO and the baseline oceanic 

initial conditions contain subsurface information that is relevant for predictability. To 

explore this hypothesis, we compute the correlation of Niño 3.4 SST anomalies in the 

DJF period with respect to both the ECCO and the baseline oceanic initial conditions. 

Figures 16a and 16c show correlation of DJF Niño 3.4 index with oceanic temperature 

averaged between 2ºS and 2ºN for, respectively, the March-5 and the June-5 ECCO 

initial conditions. Figures 16b and 16d show the same quantities for the baseline initial 

conditions. For the March-5 ECCO and baseline initial conditions (Figs. 16a and 16b) 

there is statistically significant correlation mostly around the respective climatological 

thermoclines but not at the sea surface. 

Since the thermocline is a region of large vertical temperature gradients, temperature 

anomalies in this region are to first order associated with vertical displacements, which in 

turn are primarily driven by changes in surface wind stress. For this reason, both the 

baseline integration, which is driven by NCEP reanalysis surface wind stress, and the 

ECCO solution contain subsurface information in March that is correlated with Niño 3.4 
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SST several months later. This also explains the success of both baseline and ECCO 

hindcasts in terms of skill. Hindcasts initialized from March baseline initial conditions, 

however, have significantly higher standard error than the corresponding ECCO hindcasts 

(Fig. 9a and 11a). We hypothesize that the higher success of the ECCO hindcasts is due 

to differences in the information provided at the ocean subsurface, specifically, because 

of the more realistic equatorial thermocline of the ECCO solution relative to that of the 

baseline integration. That is, the sharper and shallower thermocline of the baseline 

integration relative to ECCO and relative to observations causes larger SST anomalies in 

the resulting hindcasts.

Unlike the March-5 initial conditions, the cases with June-5 initial conditions are 

significantly correlated with DJF Niño 3.4 index at the sea surface (Figs. 16c and 16d), 

suggesting that information relevant to DJF predictability has typically outcropped to the 

sea surface by June. Nevertheless, hindcasts initialized from baseline June-5 initial 

conditions have SST standard errors that are larger than hindcasts initialized from ECCO 

June-5 initial conditions (Figs. 9b and 11b).

One limitation of this study is the small size of the record (1993 to 2001), which is used 

to test the ECCO hindcasts.  In particular, the strong 1997-1998 ENSO episode could 

make the results appear more statistically significant than they really are. Nevertheless, if 

the 1997-1998 episode is excluded, skill of all the hindcast sets drop but remain at levels 

that are both relatively high and statistically significant (above 95% level), while standard 

error remain practically the same. In particular, standard error for the baseline hindcast 

sets is still higher than for the respective ECCO sets. Table 3 summarizes hindcast skill 

and standard error for DJF Niño 3.4 SST anomaly index for each hindcast set, 

considering the whole 1993-2001 period and excluding the 1997-1998 case. 
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The results of this study confirm the importance of oceanic initial conditions for seasonal 

ENSO forecasts, as was already found in many of the studies referenced herein. The 

ready availability of ESMF coupling technology and of initial conditions generated by the 

ECCO project made it possible for a relatively modest effort to construct a CGCM ENSO 

forecasting system that has skill approaching and in some cases surpassing that of state-

of-the-art CGCM ENSO prediction systems.  The results of this study can be improved in 

many ways; for example, through the use of higher resolution and of more realistic 

UCLA AGCM and MITgcm configurations, through the use of more up-to-date ECCO 

initial conditions, through the use of a larger number of members in each ensemble 

hindcast, and through the use of estimation techniques to better calibrate the UCLA/MIT 

CGCM in order to reduce CGCM biases. Despite many limitations, the results of this 

study demonstrate the value of physically consistent ocean state estimation for initializing 

seasonal ENSO forecasts.
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Figures captions

Fig. 1. (a) Mean SST of a 41-year CGCM integration. (b) Mean SST for the 1971–2000 

period of the Reynolds SST analysis. Contour interval for (a) and (b) is 2ºC. (c) 

Difference of (a) minus (b). Contour interval for (c) is 1ºC, zero and negative contour 

lines are dashed, and negative regions are shaded.

Fig. 2. Hovmöller diagrams for the 41-year simulation averaged between 4ºS to 4ºN. (a) 

SST anomalies. Contour interval is 1ºC. Contours for +0.5ºC and −0.5ºC are also 

shown. (b) Zonal wind stress anomalies. Contour interval is 0.1 dyn/cm2. Contours for 

+0.05 dyn/cm2 and −0.05 dyn/cm2 are also shown.

Fig. 3. Correlation of Niño 3.4 SST index averaged from November to the following 

February vs. NCEP reanalysis SLP for (a) the 41-year CGCM simulation and (b) 

NOAA extended SST analysis. Contour interval is 0.1. Only contours above +0.3 or 

below −0.3 are shown.

Fig. 4. Vertical temperature sections averaged between 2ºS and 2ºN in the Pacific Ocean 

for the mean 1993–2001 initial conditions for each hindcast set. (a) ECCO initial 

conditions for March 5. (b) Baseline initial conditions for March 5. (c) ECCO initial 

conditions for June 5. (d) Baseline initial conditions for June 5. Contour interval is 

2ºC.

Fig. 5. Difference between the mean initial conditions shown in Fig. 4 and the 

corresponding March or June CGCM climatology. (a) ECCO minus CGCM on March 

5. (b) Baseline minus CGCM on March 5. (c) ECCO minus CGCM on June 5. (d) 

Baseline minus CGCM on June 5. Contour interval is 1 ºC. 
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Fig. 6. Differences between mean DJF SST hindcasts and CGCM climatology.  (a) 

ECCO DJF hindcasts initialized on March 5 minus CGCM DJF climatology. (b) 

Baseline March hindcasts minus CGCM. (c) ECCO June hindcasts minus CGCM. (d) 

Baseline June hindcasts minus CGCM. Contour interval is 1 ºC.

Fig. 7. Skill of DJF SST anomaly forecasts for (a) ECCO forecasts initialized on March-

5, (b) baseline forecasts initialized on March-5, (c) persistence forecasts initialized in 

March, (d) ECCO forecasts initialized on June-5, (e) baseline forecasts initialized on 

June-5, and (f) persistence forecasts initialized in June. Contour interval is 0.1. Only 

contours above 0.6 or below −0.6, which are significant at the 95% confidence level, 

are shown.

Fig. 8. Standard error of forecasted DJF SST anomalies for the same six cases as in Fig. 

7. Contour interval is 0.5ºC.

Fig. 9. (a) Difference of Fig. 8b minus Fig. 8a. (b) Difference of Fig. 8e minus Fig. 8d. 

Shaded areas exceed 95% statistical significance (see text for details). Contour interval 

is 0.25ºC.

Fig. 10. Skill as a function of time lead for the ECCO, the baseline, and the persistence 

hindcasts of Niño 3.4 SST monthly anomalies for (a) hindcasts initialized in March 

and (b) hindcasts initialized in June.

Fig. 11. Standard error as a function of time lead for the ECCO, the baseline, and the 

persistence hindcasts of Niño 3.4 SST monthly anomalies for (a) hindcasts initialized 

in March and (b) hindcasts initialized in June.

Fig. 12. Intra-ensemble standard deviation (forecast spread) of DJF SST for each hindcast 

set. (a) ECCO March hindcasts. (b) Baseline March hindcasts. (c) ECCO June 

hindcasts. (d) Baseline June hindcasts. Contour interval is 0.25ºC.
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Fig. 13. Equatorial Pacific vertical sections of standard deviation for interannual 

temperature anomalies averaged between 2ºS and 2ºN during the 1993−2001 period. 

(a) ECCO March 5 initial solutions. (b) Baseline March 5 initial conditions. (c) 

Difference: (a) minus (b). Contour interval is 0.5ºC.

Fig. 14. Baseline minus ECCO difference of the 1993–2001 standard deviation of Pacific 

Ocean temperature anomaly hindcasts from March-5 initial conditions, averaged 

between 2ºS and 2ºN, for (a) the March–May period, (b) the June–August period, (c) 

the September–November period, and (d) the December–February period. Contour 

interval is 0.5ºC.

Fig. 15. Time evolution of skill and standard error for Niño 3.4 SST anomalies hindcasts, 

for ECCO, NCEP's CFS and ECMWF hindcasts. (a) Skill for ECCO March-5, CFS 

from March and ECMWF from February and from May hindcasts, (b) Standard error 

(ºC) for the hindcasts of (a), (c) skill for ECCO June-5, CFS from June and ECMWF 

from May and August hindcasts, (d) standard error for the hindcasts of (c). Period 

considered is 1993–2001 in all the cases.

Fig. 16. Correlation of December–February Niño 3.4 SST index to Pacific Ocean 

temperature averaged between 2ºS and 2ºN for (a) the March-5 ECCO initial 

conditions, (b) the March-5 baseline initial conditions, (c) the June-5 ECCO initial 

conditions, and (d) the June-5 baseline initial conditions. Contour interval is 0.1. Only 

values above 0.6 or below −0.6 are shown.
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Table 1: Brier skill scores for hindcasts of the Niño-3.4 index above its median during the 

DJF period, with respect to a climatological forecast of probability 0.5. Values with 

statistical significance above the 95% level are highlighted in boldface.

ECCO March Baseline March ECCO June Baseline June

0.38 0.11 0.57 0.52
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Table 2. Comparison of results from this study (UCLA/MIT CGCM) with state-of-the-art 

CGCM seasonal ENSO forecast systems for 6-months-lead hindcasts of the Niño-3.4 

SST anomaly index. ECHAM/MOM and COLA/MOM CGCMs are described by De 

Witt et al. (2004a,b); ECMWF CGCM is described by Palmer et al. (2004); and NCEP 

CFS is described by Saha et al. (2006).  All comparisons are carried out for the 1993–

2001 period except for the ECHAM/MOM and COLA/MOM estimates, for which the 

1993–2001 statistics could not be derived from publicly available results.

GCMC
Initial 

conditions

Period of 

hindcasts
Started from

Skill measure, 

6 months lead

Standard error, 

6 months lead

March 0.80 0.62ºCECCO 1993–2001
June 0.94 0.55ºC

March 0.80 1.2ºC

UCLA/MIT
Baseline 1993-2001 June 0.95 0.80ºC

April 0.6 0.9ºC
ECHAM/MOM In house 1982-2003 July 0.8 0.9ºC

April 0.6 1.0ºC
COLA/MOM In house 1982-2003 July 0.8 1.1ºC

Feb. 0.63 0.62ºC
May 0.91 0.49ºCECMWF ECMWF 1993-2001
Aug. 0.95 0.39ºC

March 0.77 0.7ºC
NCEP CFS GODAS 1993-2001 June 0.90 0.55ºC
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Table 3. Comparison of skill and standard errors of DJF Niño 3.4 SST anomaly index for 

the hindcasts sets of this study considering the whole 1993-2001 data set and excluding 

1997-1998 episode.

Skill for DJF N34 
index, whole 

1993-2001 sets

Skill for DJF N34 
index, excluding 

1997-1998 episode

Standard error for 
DJF N34 index, 
whole 1993-2001 

sets

Standard error for 
DJF N34 index, 
whole 1993-2001 

sets
ECCO from March 0.85 0.73 0.71ºC 0.71ºC

Baseline from March 0.85 0.71 1.20ºC 1.16ºC

ECCO from June 0.95 0.88 0.41ºC 0.44ºC

Baseline from June 0.95 0.88 0.68ºC 0.69ºC
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Fig. 1. (a) Mean SST of a 41-year CGCM integration. (b) Mean SST for the 1971–2000 

period of the Reynolds SST analysis. Contour interval for (a) and (b) is 2ºC. (c) 

Difference of (a) minus (b). Contour interval for (c) is 1ºC, zero and negative contour 

lines are dashed, and negative regions are shaded.
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Fig. 2. Hovmöller diagrams for the 41-year simulation averaged between 4ºS to 4ºN. (a) 

SST anomalies. Contour interval is 1ºC. Contours for +0.5ºC and −0.5ºC are also shown. 

(b) Zonal wind stress anomalies. Contour interval is 0.1 dyn/cm2. Contours for +0.05 

dyn/cm2 and −0.05 dyn/cm2 are also shown.
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Fig. 3. Correlation of Niño 3.4 SST index averaged from November to the following 

February vs. NCEP reanalysis SLP for (a) the 41-year CGCM simulation and (b) NOAA 

extended SST analysis. Contour interval is 0.1. Only contours above +0.3 or below −0.3 

are shown.
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Fig. 4. Vertical temperature sections averaged between 2ºS and 2ºN in the Pacific Ocean 

for the mean 1993–2001 initial conditions for each hindcast set. (a) ECCO initial 

conditions for March 5. (b) Baseline initial conditions for March 5. (c) ECCO initial 

conditions for June 5. (d) Baseline initial conditions for June 5. Contour interval is 2ºC.
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Fig. 5. Difference between the mean initial conditions shown in Fig. 4 and the 

corresponding March or June CGCM climatology. (a) ECCO minus CGCM on March 5. 

(b) Baseline minus CGCM on March 5. (c) ECCO minus CGCM on June 5. (d) Baseline 

minus CGCM on June 5. Contour interval is 1 ºC.
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Fig. 6. Differences between mean DJF SST hindcasts and CGCM climatology.  (a) 

ECCO DJF hindcasts initialized on March 5 minus CGCM DJF climatology. (b) Baseline 

March hindcasts minus CGCM. (c) ECCO June hindcasts minus CGCM. (d) Baseline 

June hindcasts minus CGCM. Contour interval is 1 ºC.
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Fig. 7. Skill of DJF SST anomaly forecasts for (a) ECCO forecasts initialized on March-

5, (b) baseline forecasts initialized on March-5, (c) persistence forecasts initialized in 

March, (d) ECCO forecasts initialized on June-5, (e) baseline forecasts initialized on 

June-5, and (f) persistence forecasts initialized in June. Contour interval is 0.1. Only 

contours above 0.6 or below −0.6, which are significant at the 95% confidence level, are 

shown.
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Fig. 8. Standard error of forecasted DJF SST anomalies for the same six cases as in Fig. 

7. Contour interval is 0.5ºC.
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Fig. 9. (a) Difference of Fig. 8b minus Fig. 8a. (b) Difference of Fig. 8e minus Fig. 8d. 

Shaded areas exceed 95% statistical significance (see text for details). Contour interval is 

0.25ºC.
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Fig. 10. Skill as a function of time lead for the ECCO, the baseline, and the persistence 

hindcasts of Niño 3.4 SST monthly anomalies for (a) hindcasts initialized in March and 

(b) hindcasts initialized in June.
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Fig. 11. Standard error as a function of time lead for the ECCO, the baseline, and the 

persistence hindcasts of Niño 3.4 SST monthly anomalies for (a) hindcasts initialized in 

March and (b) hindcasts initialized in June.
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Fig. 12. Intra-ensemble standard deviation (forecast spread) of DJF SST for each hindcast 

set. (a) ECCO March hindcasts. (b) Baseline March hindcasts. (c) ECCO June hindcasts. 

(d) Baseline June hindcasts. Contour interval is 0.25ºC.
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Fig. 13. Equatorial Pacific vertical sections of standard deviation for interannual 

temperature anomalies averaged between 2ºS and 2ºN during the 1993−2001 period. (a) 

ECCO March 5 initial solutions. (b) Baseline March 5 initial conditions. (c) Difference: 

(a) minus (b). Contour interval is 0.5ºC.
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Fig. 14. Baseline minus ECCO difference of the 1993–2001 standard deviation of Pacific 

Ocean temperature anomaly hindcasts from March-5 initial conditions, averaged between 

2ºS and 2ºN, for (a) the March–May period, (b) the June–August period, (c) the 

September–November period, and (d) the December–February period. Contour interval is 

0.5ºC.
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Fig. 15. Time evolution of skill and standard error for Niño 3.4 SST anomalies hindcasts, 

for ECCO, NCEP's CFS and ECMWF hindcasts. (a) Skill for ECCO March-5, CFS from 

March and ECMWF from February and from May hindcasts, (b) Standard error (ºC) for 

the hindcasts of (a), (c) skill for ECCO June-5, CFS from June and ECMWF from May 

and August hindcasts, (d) standard error for the hindcasts of (c). Period considered is 

1993–2001 in all the cases.
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Fig. 16. Correlation of December–February Niño 3.4 SST index to Pacific Ocean 

temperature averaged between 2ºS and 2ºN for (a) the March-5 ECCO initial conditions, 

(b) the March-5 baseline initial conditions, (c) the June-5 ECCO initial conditions, and 

(d) the June-5 baseline initial conditions. Contour interval is 0.1. Only values above 0.6 

or below −0.6 are shown.


