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Abstract

The concept of reciprocal acoustical travel-time measurements as a means of deter-

mining path-averaged currents is well established. We have designed an instrument

to exploit this principle in studies of the boundary layer just beneath the arctic

ice cover. Such measurements are of interest both because of the opportunity pro-

vided for comparison with the more commonly acquired point measurements and

because of a particular configuration allowing determination of average vorticity,

which cannot be achieved with the traditional approach; in addition, their unprece-

dented sensitivity allows detection of phenomena not observable with traditional

sensors.

The acoustical instrument was deployed during the spring of 1989 in the sub-ice

boundary layer of the Eastern Arctic in order to measure turbulence, path-averaged

horizontal current, and relative vorticity. A triangular acoustic array of side 200 m

was used to obtain reciprocal transmission measurements at 132 kHz, at 8, 10 and

20 m beneath an ice floe. Pseudo- random coding and real-time signal processing

provided precise acoustic travel time and amplitude for each reciprocal path.

Mean current along each acoustic path is proportional to travel time difference

between reciprocal transmissions. Horizontal velocity normal to the acoustic paths

is measured using scintillation drift. The instrument measures horizontal circula-

tion and average vorticity relative to the ice, at length scales characteristic of high

frequency internal waves in the region. The rms noise level of the measurements

is less than 0.1 mm/s for velocity measurements and 0.01 f for vorticity, averaged

over one minute. Except near the mechanical resonance frequency of the moorings,

the measurement accuracy is limited by multipath interference.
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Path-averaged horizontal velocity is compared to point measurements and marked

differences are observed due to local anomalies of the flow field. The integral mea-

surement of current is particularly sensitive to the passage of internal waves that

have wavelengths longer than the horizontal separation of the transducers. A com-

parison of horizontal velocity at two depths in the boundary layer shows good co-

herence at internal wave frequencies and some attenuation as the ice is approached.

Relative vorticity at internal wave length scales is dominated by horizontal shear

caused by flow interaction with ice topography and not by planetary vorticity.

Reciprocal acoustical travel time measurements over paths of several hundred

meters can be used to probe the statistical behaviour of turbulent velocity fine

structure in the ocean. For homogenous isotropic flows, and for long measuring

baselines, an analytic expression relating line-averaged and point measurements

of velocity is derived. Anisotropic and inhomogeneous flows are also considered.

Correction formulas for the spatial and temporal variability of advection velocity

along the measuring baseline are obtained. Practical limitations are established,

and experimental data from the arctic boundary layer beneath ice is compared

with the theory. A new remote sensing technique for measuring turbulent kinetic

energy dissipation rate is suggested.
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Chapter 1

Introduction

As part of the Coordinated Eastern Arctic Experiment (CEAREX), we designed

and deployed an acoustical instrument to measure path-averaged horizontal veloc-

ity, relative vorticity, and turbulence in the oceanic boundary layer beneath ice.

Herein, we discuss the instrumentation and measuring techniques used, and the

observations made during the spring of 1989, just beneath a drifting floe, 300 km

northwest of the Svalbard Archipelago. A triangular array of acoustic transducers,

200 m on a side was deployed and precise acoustic amplitude and travel time data

was collected within the first 20 m of the sea surface. Reciprocal acoustical travel

time measurements and scintillation analysis were used to resolve path-averaged

horizontal currents, the vertical component of vorticity relative to the ice, and

spectral properties of the turbulent fine structure. Such measurements are of in-

terest both because of the opportunity provided for comparison with the more

commonly acquired point measurements, and because the array configuration per-

mits the determination of average vorticity, which cannot be achieved with the

traditional approach; in addition, their unprecedented sensitivity allows detection

of phenomena not observable with traditional sensors. We relate our observations

to fundamental boundary layer physics and wave dynamics.
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1.1 Motivation

Oceanographic research using underwater acoustic systems, makes exacting de-

mands on signal processing and storage technologies. This past decade has wit-

nessed the advent of powerful and affordable digital signal processing microproces-

sors and the development of high-quality digital audio recording equipment. These

technological breakthroughs are fascinating on their own merit; however, what is

even more exciting is the possibility of using them to deepen our understanding of

the physical world. To achieve this, the gap between engineering and the physical

sciences must be bridged. We have used the above-mentioned tools to make path-

averaged acoustical measurements in the boundary layer beneath the arctic pack

ice. The motivation for these measurements is given below.

Large sections of the Arctic Ocean are covered either permanently or seasonally

by sheets of floating ice. Sea-ice acts as a bridge between the atmosphere and

the ocean and its presence influences many important environmental interactions

such as momentum transfer, heat flux, absorption of radiant energy and biological

production. The extent of the ice coverage is sensitive to climatic variations; at

the same time it has a global impact on climate and the circulation of the oceans

and the atmosphere. Sea-ice participates in a variety of feedback processes. As a

positive feedback system, ice reflects short-wave solar radiation, cooling the surface

and contributing to an expansion of the ice cover. As a negative feedback system,

the cold surface builds a temperature inversion in the atmospheric boundary layer,

directing more sensible heat towards the surface, and reduces the amount of long-

wave radiation emitted by the ice [75].

Increased knowledge of the ice-ocean-atmosphere interfaces will lead to more

judicious assumptions in global climatic models. This is a prerequisite for improved

long-term climate prediction and for attacking important problems such as the

effect of industrially released gases on global warming [50]. On a practical level,

the seasonal advance and retreat of the marginal ice zone, restricts navigation

through the polar regions and impedes oil and natural gas exploration activity.
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An improved capability for predicting ice behaviour and movement contributes to

safe navigation and exploration activities in polar regions.

In order to parameterize the interaction between the polar oceans and the at-

mosphere, it is necessary to study the small-scale processes that occur in a thin

layer beneath the ice. The study of this turbulent boundary layer is complicated by

the presence of large irregularities in the underside of the ice. Measurements in this

layer have traditionally been carried out using instrumented clusters that record

temperature, conductivity and three orthogonal components of current velocity

[44], or with high-resolution vertical profilers. The drawback of these methods is

that they are essentially local in character and may not reflect the average proper-

ties of the boundary layer. It is desirable to obtain path-averaged measurements

of the boundary layer properties. Integral measurements can complement local

observations and check their representativeness; they provide a natural bridge be-

tween individual profiling data, and the more general problem of parameterizing

boundary layer properties faced by numerical modellers. The essence of our ex-

periment is the comparison of the horizontally integrated boundary layer structure

with detailed vertical profiles.

1.2 Current Measurements

The current measuring technologies typically used beneath sea-ice are described

by Morison [51] and McPhee [44]. Moored and profiling mechanical current meters

have been successfully used to measure turbulence and internal waves. Electromag-

netic current meters, diode-laser-Doppler velocimeters and more recently acoustic

Doppler current profilers have also been used. A common feature of all these

measuring technologies is that they are inherently local in character. Because of

irregularities in the underside of the ice, point measurements in the boundary layer

are subject to local anomalies and fine structure and may not be representative of

the mean flow field. Integral measurements of current provide a means of checking

the validity of local observations.
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The concept of reciprocal acoustical travel time measurements as a means of

determining path-averaged currents is well established [82]. Small-scale acoustical

current meters, based on reciprocal travel time measurements over a few centime-

ters, have been used to estimate the water drag coefficient of first-year ice. Worces-

ter et al. [83] extended the technique to the direct measurement of mesoscale ocean

currents by using transceiver separations of several hundred kilometers. At those

length scales, the problem is complicated by the existence of multiple acoustic

paths and the effects of sound speed structure. Our measurements are made in

the well-mixed layer adjacent to the floe, where the effects of sound speed vari-

ability are negligible. The horizontal separation of the transducers is 200 m and

the pulse length allows resolution between the direct and ice-reflected paths for

measurements made within a few meters of the lower surface of the ice. How-

ever, the shorter range requires travel time measurements that are a few orders of

magnitude more precise than those described by Worcester et al. Because of its

dimensions, the acoustic current meter is particularly sensitive to the passage of

high frequency internal waves under the ice camp.

1.3 Scintillation Analysis

Horizontal velocity normal to the acoustic paths can be determined by measuring

scintillation drift. Sound traveling through a medium having random fluctuations

in refractive index suffers perturbations which cause amplitude and phase scintil-

lations on a receiving plane. These scintillations can be used to study the sound

speed fine structure and large scale motions of the intervening fluid [20]. The acous-

tic array in the Arctic is used to investigate the applicability of the scintillation

technique to the study of the ice-water boundary layer.

A significant original contribution presented in this dissertation is the analy-

sis of reciprocal travel-time scintillations in terms of the intervening velocity fine

structure. The Arctic provides an ideal laboratory to test the theoretical ideas

expounded in Chapter 5. First, the ice is a stable platform from which sensitive
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instrumentation can be suspended to probe the oceanic boundary layer. Second,

due to negligible sound speed fine structure, the path-averaged measurements of

velocity fine structure using reciprocal travel time scintillation analysis can be

directly compared to the more traditional forward scatter analysis.

1.4 Relative Vorticity

Müller et al. [52] pointed out the importance of the potential vorticity mode of

motion which must coexist with internal gravity waves at small scales. Because

relative vorticity and horizontal divergence are difficult to measure, the vortical

mode of motion has traditionally been ignored. Müller et al. [53] used a triangular

current meter array to estimate potential vorticity at internal gravity wave length

scales in the ocean. They calculated relative vorticity and horizontal divergence,

not from a continuous line integral but from measurements at three discrete lo-

cations. This causes significant sampling errors. Rossby [68] suggested a better

method for measuring relative vorticity. He pointed out that the difference in travel

times of acoustic signals traveling in opposite directions around a closed ring of

transceivers provides a direct measurement of the enclosed average relative vortic-

ity. Longuet-Higgins [40] showed that a ring of four instruments will determine the

scalar vorticity and its horizontal gradient, while a ring of five instruments can also

determine the Laplacian of the vorticity field. Winters and Rouseff [81] proposed

a filtered backprojection method for the tomographic reconstruction of vorticity

in a moving fluid with variable index of refraction. Ko et al. [32] demonstrated

the feasibility of measuring mesoscale ocean vorticity from acoustic measurements.

This thesis reports the use of this technique to measure vorticity at internal gravity

wave length scales in the boundary layer just a few meters beneath the arctic ice

cover.
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1.5 Thesis Outline

Chapter 2 is a review of statistical tools used to describe random fields, of basic

boundary layer physics with emphasis on the oceanic boundary layer beneath ice,

and of internal wave dynamics. A brief overview of the Coordinated Eastern Arctic

Experiment and of the oceanography ice camp is also presented. This is a review

chapter and does not contain any original contributions, except for the bathymetric

transect of Figure 2.5, which was one of our responsibilities at the oceanography

ice camp.

Chapter 3 is a description of the instrumentation, data processing and measur-

ing techniques that was used to study the boundary layer beneath ice in the Arctic.

Although, the acoustic system was developed by Jasco Research, under contract

to the Institute of Ocean Sciences, I had the opportunity to be involved with every

stage of the project. Specifically, I was responsible for acoustic system simulation

and specifications. I participated in the design, manufacture and testing of the

electronics. I wrote most system software, including real-time decoding algorithms

for the sonars, and communications, testing, monitoring, data analysis and display

software. I also designed and helped assemble the moorings, and planned and

prepared for the arctic experiment.

Chapter 4 is an overview of our observations, and an analysis of the factors

that limit the accuracy of the path-averaged measurements. Except as otherwise

noted, I am responsible for all the material included in Chapter 4. I participated in

the CEAREX oceanography ice camp, helped during the deployment and recovery

of the ice camp, was responsible for the deployment, operation and recovery of the

acoustic system, and carried out all data analysis discussed in Chapter 4.

A new measurement technique for the acoustical remote sensing of velocity

fine structure, based on reciprocal travel time scintillation analysis is described

in Chapter 5. This chapter contains the most significant original contribution

of the thesis. Existing theory, regarding the statistical description of turbulence,

has been extended to interpret reciprocal travel time scintillations in terms of the
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intervening velocity fine structure.

Amplitude scintillation analysis of the data is carried out in Chapter 6; energy

dissipation rate is estimated from amplitude scintillations and compared with an

estimate from reciprocal travel time measurements. No part of the theory presented

in this chapter is new. However, the measurements are unique: for the first time

it is possible to estimate acoustically the contribution of velocity and sound speed

fine structure to forward scatter scintillations.

In Chapter 7, we exploit the path-averaged nature of the current measurements

to detect surface gravity waves, which could not be detected by conventional cur-

rent meters at the ice camp. This is an interesting exercise which demonstrates

the sensitivity of the acoustical current meter, and confirms the ubiquitousness of

low frequency swell, away from coastal regions in the world’s oceans.

Internal waves, propagating in stratified water beneath the ice camp, are dis-

cussed in Chapter 8. The sensitivity and path-averaged nature of the acoustic

measurements are used to observe internal waves that are below the resolution of

conventional instrumentation. Simultaneous observations at two depths are com-

pared. The passage of an energetic wave packet is reported. The description of the

energetic wave packet includes material from a joint publication [12]; in Chapter

8, I emphasize and expand upon my contribution to the paper.
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Chapter 2

Background

Since the drift of the Fram in 1893–6, it has been known that ice floes are not

stationary, but drift under the influence of wind, oceanic currents, internal ice

stress and the rotation of the earth. During the expedition, Nansen [57] observed

that the ice consistently veered 20◦ to 40◦ to the right of the surface wind and

surmised that the deviation resulted from the Coriolis force. These observations

led to the development of Ekman’s theory on sheared fluids in a rotating reference

frame. With minor modifications, to account for a thin region of intense shear

near the ice-ocean interface, Ekman’s theory is still in use today; it is discussed

in Section 2.2 in the context of momentum transfer from the atmosphere to the

ocean.

Nansen also made the first scientific observations of the generation and prop-

agation of internal waves. During his passage across the Barents Sea, he noticed

that the progress of his ship, the Fram, was considerably impeded when sailing

through a thin layer of fresh water overlying saltier water. Ekman confirmed theo-

retically that the passage of the ship was generating interfacial waves and that the

momentum of the ship was reduced by the transfer of its momentum to the waves

which it generated. Internal waves are further discussed in Section 2.3.

From August 1988 to May 1989, the Coordinated Eastern Arctic Experiment

(CEAREX) was staged in the Arctic to obtain a better understanding of the

oceanography and acoustic transmission properties of the Arctic Ocean and ad-
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joining seas. Sponsored by the U.S. Office of Naval Research, CEAREX involved

participants from the USA, Canada, Norway and the UK. The measurements de-

scribed herein were obtained at the CEAREX oceanography ice camp. An overview

of the experiment is given in Section 2.4.

2.1 Statistical Description of Random Fields

Before discussing turbulence and waves, it is appropriate to introduce the concept

of random fields, and the statistical functions used to characterize these fields. The

physical parameters of the water column—temperature, salinity, pressure, current

velocity, etc.—and ice cover—tilt, strain, thickness, etc.—of the Arctic Ocean vary

in time and space, and depend on one another and on external effects. For example,

turbulence and waves generate measurable fluctuations of temperature, pressure,

velocity, and other parameters. In most cases, detailed measurement of all perti-

nent physical properties of the medium is not practical. For convenience, or out of

necessity, the parameters of interest are treated as random fields and are described

by their average characteristics.

The description of random fields is based on ensemble averaging of certain

quantities over a large number of flow realizations. In practice, ensemble averages

can often be replaced by time (or space) averages, which are more readily available.

This substitution is possible for flows that are stationary and ergodic. Stationarity

implies that the statistical properties of the flow do not change with time (or

space—a spatially homogeneous flow is said to be stationary in space). Under

most experimental conditions, stationary fields are also ergodic [4].

The basic statistical properties used for describing stationary random fields in

this thesis are

1. the mean,

2. the variance,

3. the autocorrelation function,
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4. the autospectral density function,

5. the cross-correlation function,

6. the cross-spectral density function,

7. the frequency response function,

8. and the coherence function.

The first four items describe a single random process, while the last four measure

properties shared by two different stationary random processes.

2.1.1 Correlation Functions

Consider two stationary random functions of time, x(t) and y(t). The mean value

of x(t) is

µx = 〈x(t)〉 ≈ x(t) =
1

T

T
∫

0

x(t) dt, (2.1)

where the angle brackets indicate ensemble averaging and the overbar indicates

time averaging. For an ergodic process, the true mean value can be obtained by

letting the averaging period T approach infinity. In practice, T is finite, and we

can only estimate µx. The variance of x(t) is

σ2

x = 〈[x(t) − µx]
2〉, (2.2)

the average of the square of the deviation from the mean value. The standard

deviation σx is the positive square root of the variance, and is equal to the root

mean square (rms) value if the mean µx is zero. A generalization of the concept of

variance is the covariance function

Cxy(τ) = 〈[x(t) − µx][y(t+ τ) − µy]〉, (2.3)
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where the delay τ can be either positive or negative. The correlation coefficient

function is defined as

ρxy(τ) =
Cxy(τ)

σxσy
, (2.4)

and satisfies −1 ≤ ρxy(τ) ≤ 1, for all τ .

The cross-correlation function between x(t) and y(t) is

Rxy(τ) = 〈x(t)y(t+ τ)〉. (2.5)

From the stationary hypothesis, it follows that

Rxy(−τ) = Ryx(τ). (2.6)

For random functions that have zero mean, µx = µy = 0, Rxy(τ) and Cxy(τ) can

be interchanged as we have done in Section 6.2. The autocorrelation function of

x(t),

Rx(τ) = 〈x(t)x(t + τ)〉, (2.7)

is a special case of Rxy(τ) when x(t) = y(t). Note that for τ = 0, the autocorrela-

tion function is equal to the mean square value of x(t),

Rx(0) = 〈x2(t)〉. (2.8)

Spatial, instead of time-lagged correlation functions can also be defined. For ex-

ample, in Section 5.2.1, Equation (5.5), we introduce the spatial correlation tensor

Rij(r) to describe a homogeneous turbulent velocity field.

Equations (2.5) and (2.7) describe correlation functions for stationary random

functions, which by definition contain infinite total energy but finite average power.

For signals whose total energy is finite, a somewhat different definition of correla-

tion must be used:

Rxy(τ) =

∞
∫

−∞

x(t)y(t+ τ) dt. (2.9)

This is the type of correlation function discussed in Section 3.2.
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2.1.2 Spectral Functions

The cross-spectral density function

Fxy(f) =
1

T
〈X ∗

T (f)YT (f)〉, (2.10)

is defined in terms of the finite Fourier transforms,

XT (f) =

T
∫

0

x(t) exp(−i2πft) dt (2.11)

and YT (f), of the data records, x(t) and y(t); the asterisk denotes a complex con-

jugate. Fxy(f) is a measure of properties shared by x(t) and y(t) in the frequency

domain. For stationary random data, the cross-spectral density function,

Fxy(f) =

∞
∫

−∞

Rxy(τ) exp(−i2πfτ) dτ, (2.12)

is the Fourier transform of the cross-correlation function Rxy(τ) (2.5), so that

Rxy(τ) =

∞
∫

−∞

Fxy(f) exp(i2πfτ) df. (2.13)

Notice that at τ = 0,

Rxy(0) =

∞
∫

−∞

Fxy(f) df, (2.14)

and from the symmetry property of stationary correlation functions (2.6), it follows

that

Fxy(−f) = F ∗

xy(f) = Fyx(f). (2.15)

Fxy(f) is defined for −∞ < f < ∞, and is mostly used for theoretical work

as we have done in Chapters 5 and 6 while discussing scintillation theory. For
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experimental work, it is more convenient to use the one-sided density function,

Gxy(f) =

{

2Fxy(f) for 0 ≤ f <∞
0 otherwise

, (2.16)

as we have done in Chapters 4, 7 and 8.

The autospectral density functions, Fx(f) and Gx(f), are special cases of Fxy(f)

and Gxy(f) for x(t) = y(t). They are also called power spectral density functions,

or simply power spectra, and they measure the rate of change of mean square value

of x(t) with frequency. From (2.8) and (2.14), it follows that the total area under

the autospectral density function over all frequencies is the mean square value of

the record. The partial area from f1 to f2 under Gx(f) represents the mean square

value of x(t) associated with that frequency range.

In practice, spectral density functions are evaluated using Fast Fourier Trans-

form (FFT) algorithms [66]. In computing spectral density functions throughout

this thesis, we carry out the following steps [4].

1. We divide the available data record into several contiguous segments (with

50% overlap to reduce the variance increase caused by tapering).

2. We detrend each segment to avoid the distortion that can be caused by a

large low-frequency bias.

3. Each segment is tapered using a cosine squared (also called Hanning) window

to suppress side-lobe leakage.

4. We compute the FFT of each segment.

5. We adjust the scale factor of the FFT by
√

8/3 to compensate for Hanning

tapering.

6. We compute the spectral density function using (2.10) for a two-sided esti-

mate or (2.16) for a one-sided estimate.
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7. The 95% confidence interval is estimated by calculating the variance of the

unaveraged spectral estimates under the assumption of a normal distribution.

Autospectral and cross-spectral density functions can be used to compute the

theoretical linear frequency response function, and the coherence function between

records as discussed below.

The frequency response function of a constant-parameter, single-input/single-

output linear system is

H(f) =

∞
∫

−∞

h(τ) exp(−i2πfτ) dτ, (2.17)

the Fourier transform of the unit impulse response function h(τ) which describes

the system. In complex polar notation, the frequency response function can be

written

H(f) = |H(f)| exp[−iφ(t)], (2.18)

where |H(f)| is the gain factor and φ(t) is the phase factor of the system. Under

ideal conditions, the output,

y(t) = h(t) ∗ x(t) =

∞
∫

0

h(τ)x(t− τ) dτ, (2.19)

is given by the convolution of the input, x(t), and the unit impulse response func-

tion h(t). In the frequency domain, (2.19) can be written as

Y (f) = H(f)X(f), (2.20)

where Y (f), H(f) and X(f) are the Fourier transforms of y(t), h(t) and x(t),

respectively. It can be shown that the input/output cross-correlation function [4],

Rxy(τ) = h(τ) ∗Rx(τ), (2.21)
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is the convolution of the impulse function and the autocorrelation function of the

input signal. Taking the Fourier transform of (2.21), we obtain

Fxy(f) = H(f)Fx(f). (2.22)

Equations (2.21) and (2.22) are used in Section 3.2.4 and Appendix A to derive

a theoretical expression for the shape of the correlation peak. For linear sys-

tems, H(f) can be estimated using deterministic or stationary random data, since

its properties are independent of the nature of data passing through the system.

Equations (2.20) and (2.22) suggest two methods of estimating the frequency re-

sponse function,

H(f) =
Y (f)

X(f)
=
Fxy(f)

Fx(f)
, (2.23)

between two data records x(t) and y(t).

The coherence (also called coherency squared) function,

γ 2

xy(f) =
|Fxy(f)|2
Fx(f)Fy(f)

, (2.24)

of two data records, x(t) and y(t), is the ratio of the square of the absolute value

of the cross-spectral density function to the product of the autospectral density

functions of the two records. For all f , γ 2
xy(f) satisfies 0 ≤ γ 2

xy(f) ≤ 1. The

coherence function is a measure of the extent to which x(t) and y(t) can be assumed

to be related by a linear input/output frequency response function.

2.1.3 Nonstationary data

The correlation and spectral functions discussed in Sections 2.1.1 and 2.1.2 are

restricted largely to the measurement and analysis of stationary random data.

Much of the random data of interest in practice is nonstationary when viewed

as a whole. Although no general methodology for analyzing the properties of all
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types of nonstationary data exists, some special techniques have been developed

that can be applied to limited classes of nonstationary data [4]. A subset of these

techniques will be introduced in this section.

One common practice when analyzing data that is nonstationary as a whole is

to consider the random field as piecewise stationary. This idea is used in Section

5.2.2 for describing properties of inhomogeneous turbulence.

Another useful formalism for the analysis of nonstationary data is to define

correlation and spectral functions that can vary with the time and location of the

measurement. For example, the correlation functions defined by (6.3) and (6.14)

in Section 6.2 depend not only on time lag τ and separation r, but also on time t

and location x.

The final approach to be considered here is the decomposition of the data into

mean and fluctuating quantities. This technique is extensively used in turbulence

studies where it is known as Reynolds’ decomposition. It involves writing a certain

property of the fluid,

U = U + u, (2.25)

in terms of a mean value, U , and a fluctuating component, u. Once this has been

done, U is viewed as a deterministic quantity and u is a random variable described

by its statistical characteristics. The equations of motion are then used to develop

an understanding of the evolution of U and the statistics of u. For this reason, the

averaging scheme used must satisfy the following requirements [64].

1. The averages must be differentiable up to any order required by the equations

of motion.

2. The averaging process must satisfy the Reynolds’ postulates that

(a) all fluctuation quantities must average to zero,

(b) the correlation between fluctuations and average quantities must vanish,



17

(c) and the averaging process applied to an average quantity must repro-

duce the same average.

The only averaging operation that satisfies all the above requirements is the en-

semble average, but in practice time or space averages have to be used. Moving

averages, and linear regression fits to nonoverlapping portions of a time series,

are the two most common methods of taking time averages in turbulence stud-

ies. Strictly speaking, these two methods do not satisfy all the requirements listed

above unless U and u are separated by a large spectral gap [64]. Unfortunately,

such a spectral gap is rarely observed in the atmosphere or the ocean, and it seems

impossible to distinguish rigorously between wave motion and turbulence [71]. For

this reason, caution must be exercised in the choice of the averaging method, and

in the interpretation of the average and fluctuating quantities.

2.2 Oceanic Boundary Layer in the Arctic

By comparison to the open ocean, the oceanic boundary layer in the Arctic is a

quiet place. The ice cover inhibits surface wave action and the direct exchange

of heat and mass with the atmosphere. The ice also has a profound effect on

the manner in which momentum is transferred from the atmosphere to the ocean.

Mechanical energy is transferred from the atmosphere to the ice, which in turn

acts on the ocean. R.W. Stewart (1993, personal communication) has suggested

that as a result of the low drag coefficient of surface waves [72], and depending on

the roughness of the ice, the ice may actually enhance momentum transfer between

the atmosphere and the ocean.

In the Arctic Ocean, the mean currents are generally on the order of 2 to 3 cm/s

and the rms ice velocity is on the order of 7 cm/s [51]. As a result, the currents

near the surface are dominated by boundary-layer motion. The typical current

velocity profile under the ice includes three more or less separate components.

1. A thin layer (typically 2–5 m) of intense shear adjacent to the ice, where the



18

velocity profile relative to the ice is logarithmic and unidirectional, is called

the surface layer by analogy to terminology in the atmospheric boundary

layer. This region is further discussed in Section 2.2.2.

2. A region farther from the interface, where the relative velocity vector turns

noticeably with depth in a decreasing spiral, is known as the Ekman layer.

The spiral results from the balancing between the Coriolis and friction forces.

Its depth (typically 40 m to 80 m) is defined to extend to where the current

velocity has veered 180◦ and fallen to 4% of the surface value.

3. Finally, there is a geostrophic current associated with the slope of the sea

surface and not dependent on recent, local wind. This current results from

a balance between the Coriolis and pressure forces.

The first two layers form the mixing layer; turbulent mixing driven by shear and

buoyancy forces homogenizes the temperature and salinity structure. It is worth-

while to note that although there have been few good observations of the predicted

spiral in the open ocean and the atmosphere [70], the conditions in the arctic

boundary layer are such that true spirals are often observed under ice, provided

the currents are averaged long enough so that inertial effects are not dominant

[45].

An important factor in determining ice velocity relative to the underlying ocean

is the topographic relief of the ice bottom. The hydraulic roughness manifests itself

both in small scale roughness responsible for generating turbulent skin friction

and as a larger scale distribution of pressure ridge keels which exert a form drag

analogous to mountain drag in the atmosphere.

In an ice-covered ocean, the near-surface waters are held very near the freez-

ing point. At these temperatures, the density is controlled mainly by changes in

salinity. For this reason, the density structure depends mostly on salt concentra-

tion in contrast to most other regions in the ocean where density is controlled by

temperature. In the summer, the thickness of the ice cover is reduced by melt-
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ing water beneath the floe. Thereby, the salinity of the surface waters decreases.

This increased stratification inhibits turbulent mixing and the mixed-layer depth

is reduced.

During the winter, surface cooling causes freezing of sea water and formation

of new ice. The freezing process rejects salt and increases the salinity of the

water adjacent to the ice. This creates a buoyancy imbalance that enhances the

turbulent mixing of the boundary layer. Sinking salty water from the turbulent

region encounters a region of increased salinity below the mixed layer; its vertical

velocity is retarded and eventually reversed. In the process, however, it usually

mixes with some of the warmer water beneath the boundary layer and brings it up

to be incorporated into the turbulent region. This entrainment results in the steady

increase of the mixed layer and in an upward heat flux through the boundary layer

that eventually balances out the heat lost through the ice to the atmosphere and

inhibits further ice growth.

As further discussed in Section 6.3.1, temperature and salinity fluctuations in

the arctic oceanic boundary layer are relatively small. The practical consequence

of this is the requirement of highly sensitive instrumentation to measure the sound

speed fluctuations of the medium.

2.2.1 Basic Equations

In this section we state the equations used to model the behaviour of the boundary

layer. It is often assumed that the mixed layer is horizontally homogeneous [43].

Therefore, the conservation of momentum equation for a turbulent flow can be

written as

∂V

∂t
+ fk × V +

1

ρ
∇P − gk +

∂

∂z
〈wv〉 = 0, (2.26)

where V and v are the mean value and fluctuations of horizontal velocity, and

boldface print indicates a vector quantity. This is a modified version of Navier-

Stoke’s equation with simplifications due to the horizontal homogeneity of the
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medium (i.e. the partial derivatives with respect to x and y are negligible compared

to the other terms of the equation), the assumption that vertical velocity has zero

mean, and the addition of Coriolis and Reynolds’ terms. The viscous term is

omitted since it is negligible compared with friction caused by turbulence (high

Reynolds’ number). Each term of (2.26) is described below.

1. The first term is the average horizontal acceleration of the fluid.

2. The Coriolis term accounts for the effect of the earth’s rotation; k is a unit

vector along the vertical coordinate axis z, f = 2Ω sin Φ, where Ω is the

angular speed of rotation of the earth about its axis, and Φ is the geographic

latitude.

3. Although the fluid is assumed horizontally homogeneous, a large-scale hori-

zontal pressure gradient ∇HP is allowed to account for sea surface slope. The

vertical pressure gradient balances gravity; ρ is the fluid density.

4. The fourth term is the gravitational acceleration g at the surface of the earth.

5. The last term is the vertical gradient of Reynolds’ stress where w is the

vertical velocity component.

The solution of Equation 2.26 is difficult because of the nonlinearity of the last

term. To a first approximation, the effect of the turbulent fluctuations on the mean

flow can be considered analogous to the effect of molecular motion as developed in

the kinetic theory of gases. Reynolds’ stress can therefore be written

τ = −〈wv〉 ≈ Kz
∂V

∂z
(2.27)

in terms of an eddy viscosity coefficient Kz. This is a simple example of a closure

procedure.

We can also write conservation equations for heat

∂T

∂t
+

∂

∂z
〈wT ′〉 =

QT

ρcp
(2.28)
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and salinity

∂S

∂t
+

∂

∂z
〈wS ′〉 = QS (2.29)

where T and T ′ are the mean and turbulent fluctuations of temperature, QT is a

source term for heat in fluid with heat capacity cp, S and S ′ are the mean and

turbulent fluctuations of salinity, and QS is a source term for salinity. As for the

momentum equation, we can define eddy conductivity KT and eddy diffusion KS

for salt so that

−〈wT ′〉 ≈ KT
∂T

∂z
(2.30)

and

−〈wS ′〉 ≈ KS
∂S

∂z
. (2.31)

Finally, the approximate equation of state for seawater is

∆ρ

ρ
= −βT ∆T + βS∆S (2.32)

where βS ≈ 8.1×10−4 in polar waters and βT is a function of temperature, salinity

and pressure. McPhee [43] discusses several methods used to find approximate

solutions to the above equations in the arctic boundary layer.

2.2.2 Surface Layer

Under steady state conditions, there often exists a region near the ice where the

Reynolds’ stress (2.27) of the fluid does not appreciably change magnitude,

τ(z) ≈ τ◦, (2.33)

or direction with depth z. If in addition to constant stress, the buoyancy fluxes

caused by freezing or melting of the ice are negligible, then, on dimensional grounds,
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the mean velocity gradient is [72]

∂U (z)

∂z
=
u∗
κz
, (2.34)

where u∗ is the friction velocity associated with stress by τ◦ = ρu 2
∗
, ρ is seawater

density, and κ ≈ 0.4 is Von Kármán’s constant. This region is commonly called

the surface layer and comprises roughly one tenth of the mixing layer under ice

[45]. In this region, the rate of turbulent kinetic energy production by the working

of the stress on the mean gradient is equal to the dissipation rate,

τ◦
∂U(z)

∂z
= ε(z) =

ρu 3
∗

κz
, (2.35)

and integrating (2.34), we find that the mean velocity profile varies logarithmically

with distance from the boundary,

U(z) =
u∗
κ

ln(z/z◦), (2.36)

where z◦ is a length scale known as the roughness length. It is common to relate

the turbulent stress near the surface,

τ◦ = ρCD(z)U
2
(z), (2.37)

to the mean ice-relative velocity U(z) at depth z, by the quadratic drag coefficient

CD(z). In the surface layer, the drag coefficient,

CD(z) =
u 2
∗

U
2
(z)

=
[

1

κ
ln(z/z◦)

]−2

, (2.38)

is the square of the ratio of friction velocity to mean ice-relative velocity. A surface

layer with similar characteristics is also observed in the atmospheric boundary layer

above the ice. In Section 6.5.4, we use the approximations introduced here to infer

stress, drag coefficient and roughness length above and below the ice.
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2.2.3 Vorticity Equation

In order to study relative vorticity, we must relax the condition of horizontal ho-

mogeneity. The equation for conservation of momentum becomes

∂V

∂t
+ V · ∇HV + fk × V +

1

ρ
∇HP + F = 0 (2.39)

where F represents the contribution from the turbulent friction terms and we

have eliminated the vertical pressure gradient with the gravity term. The relative

vorticity is defined as the z-component of the curl of the horizontal velocity vector.

ζz = (∇× V)z. (2.40)

Taking the curl of Equation 2.39, we obtain

(

∂

∂t
+ V · ∇H

)

(ζz + f) + (ζz + f)∇ · V + ∇× F = 0. (2.41)

The quantity (ζz +f), the sum of the relative and planetary vorticities, is called the

absolute vorticity. Equation 2.41 shows that if a fluid is vorticity-free, it remains

so unless vorticity is diffused in by the friction term either from a boundary, or

from some other region of the fluid that does contain vorticity. The second term

of the equation is recognized as a measure of the tendency of the horizontal flow

to diverge (∇ · V > 0) or converge (∇ · V < 0). Convergence is associated with a

stretching of the vortex lines and an increase in vorticity. Conversely, divergence

is associated with a decrease in vorticity. In the arctic boundary layer, vorticity

will be caused by the under-ice topography and by changes in the forcing function,

i.e. the motion of the floe.

2.3 Internal Waves

Internal gravity waves are ubiquitous to the stratified waters of the world’s oceans

[35]. They are important in transporting momentum and energy both horizontally
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and vertically. The wave field is remarkably constant in space and time, permitting

the formulation of a “universal” statistical description [24, 25], yet the processes

that generate and dissipate these waves are not well understood. However, inter-

nal waves in the Arctic Ocean appear to be more variable than waves in other

oceans [38, 37] and hence may allow study of specific mechanisms of wave growth,

propagation, and decay [79].

Deep in the ocean, internal waves generate large displacements of water. Ver-

tical displacements at the surface are orders of magnitude smaller and masked by

noise from turbulence and wind waves on open seas. In most internal wave mod-

els, such surface displacements are ignored and a rigid-lid boundary condition is

invoked in which the vertical displacement of the sea surface is set to zero [65].

The ice cover of the Arctic Ocean suppresses surface wave noise and enables di-

rect measurement of vertical displacements of the surface forced by internal waves

using tilt sensors deployed on the ice. Internal waves also cause large horizontal

displacements of the mixed layer in the inertial to buoyancy frequency range. Ice

tilt and mixed layer horizontal velocity measurements of internal waves are further

discussed in Chapter 8.

2.4 Coordinated Eastern Arctic Experiment

The area investigated during CEAREX, as well as an overview of operations are

shown in Fig. 2.1. In September 1988, the chartered Norwegian research vessel

Polarbjørn was escorted by an icebreaker to the position shown in Fig. 2.1 in the

central Arctic and allowed to freeze in and drift with the pack ice until December,

when it broke free to the east of Svalbard. During this drift phase, oceanographic,

acoustic, and ice physics experiments were performed.

For a three-week period from mid-January 1989, Polarbjørn was used for an

oceanographic experiment on the Svalbard shelf to the west of Svalbard. This

phase of CEAREX is known as the ‘Whaler’s Bay Ops’ after an area to the north
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Figure 2.1: CEAREX overview [59].
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of Svalbard where the experiment was originally to have taken place (Fig. 2.1).

However, unexpected ice conditions in that region necessitated the change in plan.

From February 9 to the end of April, the ship acted as the platform for the SIZEX

(Seasonal Ice Zone Experiment) and MIZ (Marginal Ice Zone) phases of the ex-

periment in the Barents and East Greenland seas (Fig. 2.1).

In mid-March, the Acoustics Camp (A Camp) and the Oceanography Camp

(O Camp) were established on continuous pack ice north of Svalbard (Fig. 2.1).

Both camps drifted toward Fram Strait and were evacuated at the end of April.

Work at A Camp consisted of acoustic experiments, while most of the work at O

Camp was concerned with physical oceanographic experiments.

The Greenland Sea Project tomography array experiment (Fig. 2.1), which

took place simultaneously, was to determine the physical structure of the volume

of ocean enclosed by the array of acoustic transducers, using the technique of

acoustic tomography developed by Munk and Wunsch [55, 56].

2.4.1 Oceanography Ice Camp

The oceanographic objective of the CEAREX O Camp was to measure the pro-

cesses responsible for the exchange of heat, mass, and momentum between the

Arctic Ocean and the atmosphere. The camp was established on March 18, 1989,

300 km northwest of Spitsbergen, and drifted with the pack ice for six weeks

(Fig. 2.2).

Most experiments at the ice camp involved lowering instruments through holes

which were melted in the ice, on average 2.5 m thick, using steam. These re-

mained open under heated tents which also housed the investigators and their

instrumentation. Most investigators were oceanographers interested in measuring

tidal currents, and meso- to small-scale processes taking place beneath the sea ice

[59]. The measurements confirmed that the Yermak Plateau (Fig. 2.2) is a region

of greatly enhanced diurnal tidal currents that are related to plateau topography
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Figure 2.2: Drift track of CEAREX O Camp from April 3 (day 93) to April 25
(day 115), 1989. Depth contours are in meters. Time along drift track is in day of
year [61].
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[63]. These enhanced tides are thought to be responsible for the production of the

high-frequency internal wave packets discussed in Section 8.3. Mesoscale features

included ‘warm’ eddies several kilometers in diameter, which are thought to pinch

off from the warmer northward-flowing West Spitsbergen current. Smaller scale

features include microstructure and fine structure, in scales ranging from centime-

ters to tens of meters, which are produced by turbulent and diffusive processes

[62, 46]. Of particular interest to many of the scientists were internal waves and

their interactions with sea ice [12, 79].

These various processes were measured using the instruments sketched in Fig. 2.3.

Two Acoustic Doppler Current Profilers (ADCP) measured vertical profiles of cur-

rent velocity, using sound. A yo-yo Conductivity, Temperature and Depth (CTD)

sensor cycled rapidly down to depths of 600 m to give good temporal and vertical

resolution of the internal wave field. A helicopter CTD survey was performed at

remote locations in the area surrounding the camp, to give a large-scale picture

of temperature and salinity fields in the ocean. A vertical string of current me-

ters, thermistors, conductivity cells and pressure sensors was deployed to obtain

point measurements of current velocity, temperature, conductivity and pressure.

A vertically-profiling microstructure recorder, a higher resolution ADCP, and mov-

able instrumented frames recorded small-scale variations in the water column. An

untethered autonomous vehicle measured horizontal variations in salinity and tem-

perature fields near the camp. An ice sounder was deployed in several locations

under the ice to map the topography of the ice from below, from which the ice

thickness was inferred (Fig. 2.4).

Our contribution to the measurement program of the oceanography ice camp in-

cluded the measurement of ocean depth using a 10 kHz echo sounder (Fig. 2.5), and

the deployment of a triangular array of acoustic transducers to measure acoustic

scintillations, horizontal velocity, and vorticity relative to the ice. The character-

istics of the acoustic array, and of the measurements made with it in the boundary

layer beneath ice at the CEAREX O Camp are the subject of this dissertation.
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Figure 2.3: Scientific activities at O Camp [59].
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Figure 2.4: Bottom topography of the ice. Contour intervals are 1 m. The heights
are vertical distance from the ice bottom to the sea level. The location of the
triangular acoustic array is marked on the figure [10].
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Figure 2.5: Transect of water depth along the drift track of the CEAREX O Camp,
from March 30 (day 89) to April 25 (day 115), 1989.
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Chapter 3

Description of the Acoustical

System

The acoustic system consisted of six underwater units grouped in three clusters

located at the corners of a horizontal triangle of side 200 m (Fig. 3.1). At each

corner, sonars were deployed at two separate depths beneath the ice. The depth

of each triangular array could be manually adjusted between 8 and 100 m. The

underwater units were connected to surface electronics contained in a centrally

located instrument hut through multiconductor cables. At regular intervals, each

sonar emitted a coded acoustic signal which was received, digitized and decoded in

real-time by the other units. The accompanying electronics allowed precise mea-

surement and recording of acoustic amplitude and travel time. The simultaneous

reciprocal travel time measurement at frequent intervals along each side of the tri-

angular array provided the basic data set from which velocity and average vorticity

were subsequently determined.

The quantity of digital information generated by the system posed a formidable

processing and storage challenge. The raw data consisted of twenty-four 16-bit

channels sampled at 44 kHz. In order to reduce the required recording bandwidth,

decoding of the acoustic signal and data reduction was carried out in real time

for each sonar. Serial data streams from the sonars were then dispatched to the

surface where they were interleaved and stored on video cassette recorder tapes
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Figure 3.1: Schematic representation of the acoustical system. Underwater units
were deployed at two depths at the corners of a horizontal triangle. Velocity and
average vorticity are obtained from reciprocal travel time measurements along each
side of the array. The direct and ice-reflected acoustic ray paths are depicted for
a pair of transmit-receive sonars.

using digital audio technology.

3.1 Instrumentation

3.1.1 Deployment

The six underwater units were deployed at two separate depths at the vertices of

an equilateral triangle with sides of length 201, 205 and 211 m; the acoustic array

was laid out beneath the floe so as to span both multiyear and young ice, thus

providing contrasting turbulence regimes (Fig. 3.2).

Each underwater unit consisted of two sonars mounted on a steel bar and sus-

pended from the ice (Fig. 3.3). The use of paired sensors was intended both to

explore the possibility of scintillation analysis and also to provide redundancy. Ad-

justment of sonar depths was achieved by energizing 1 kW heating wires embedded

in slotted PVC tubes surrounding the cables where they passed through the ice.

The heating wires melted the water inside the tubes thus freeing the cables for

depth adjustment.
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Figure 3.2: Aerial view of CEAREX oceanography ice camp. The camp was
located on multiyear ice as indicated by the large number of pressure ridges. The
underwater units of the acoustic system were deployed at the corners of the triangle
drawn on the diagram. The array is seen to span both first year and multiyear ice
[80].
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Figure 3.3: Sketch of an underwater unit. Each unit comprised two transduc-
ers with accompanying electronics mounted on a steel bar which was suspended
horizontally under the ice. The two adjacent transducers were used to measure
scintillation drift and obtain horizontal velocity normal to the acoustic paths.

3.1.2 Surface Electronics

The surface modules were responsible for the generation of the analog transmis-

sion signal, the timing and control of the acoustic system, and the storage and

monitoring of the digital data collected by the sonars (Fig. 3.4). The timing and

control unit supplied all system clocks. It derived the clock reference from a pulse

code modulation encoder, divided it as required and distributed it to the transmit-

signal generator and the sonars. This unit also controlled transmit timing and

sequencing. The transmit-signal generator produced the pseudo-random code for

transmission. The junction box acted as a traffic controller for signals between

the sonars and the rest of the instrumentation; on one side it received wiring from
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Figure 3.4: Block diagram of the surface electronics. The surface modules are con-
tained in a centrally located instrument hut and are responsible for the generation
of the analog transmission signal, timing and control of the acoustic system, and
storage and monitoring of the digital data collected by the sonars. The informa-
tion and data flow between the units is illustrated during (a) transmission and (b)
reception of acoustic signals.

the surface electronics, while on the other there were connectors which constituted

the starting point of the underwater cables. The data recording unit received pro-

cessed digital data from the underwater units and stored the data on video tapes

using a pulse code modulation encoder. A personal computer was used to specify

the transmission sequence, control the sonars, and validate the collected data.

3.1.3 Transmit

Transmission was initiated by downloading a transmission sequence from the per-

sonal computer to the timing and control unit (Fig. 3.4a). The transmission se-

quence most commonly used consisted of firing the transducers located at one
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Figure 3.4: (Continued)

corner of the array in quick succession, then waiting 200 ms for all direct and

reflected paths to be received, and finally resetting all sonars before firing the

next cluster of transducers. The entire cycle through all the transducers required

910 ms. Following each transmission, the sonars were reset so as to avoid effects

of electronic interference on the clock signal.

Once the transmission sequence was downloaded, the timing and control unit

took over and the personal computer was available for other tasks. At the appropri-

ate instant, the timing and control unit instructed the transmit-signal generator to

start a transmission. The transmit-signal generator generated the analog-transmit

signal. An arbitrary waveform of up to 32768 samples was stored in erasable pro-

grammable read only memory and played back under clock control. The signal

then passed through a digital to analog converter and bandpass filter. One linear

power amplifier was used for transmission. When the transmission was complete,
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the transmit-signal generator informed the timing and control unit, and waited

for the next instruction. The junction box contained relays which channeled the

output of the power amplifier to each transducer in succession as directed by the

timing and control unit.

3.1.4 Sonars

Each sonar was designed to transmit, receive, digitize and decode pseudo-random,

phase encoded acoustic signals using omnidirectional transducers that operated at

a nominal frequency of 132 kHz (Fig. 3.5). The transmit/receive switch was of

a simple design employing a dissipating resistor and a diode clamp at the input

of the preamplifier. Pressure housings were located adjacent to each transducer.

Each housing contained data acquisition, signal processing, and communications

electronics. Data acquisition and digitizing was carried out with two 16-bit analog

to digital converters that performed in-phase and quadrature sampling up to a

maximum sampling rate of 50 kHz. During operation, a programmable gain am-

plifier was set to accommodate the acoustic signal level. The digitized data was

decoded in real time by a vector signal processor that cross-correlated the received

signal with a template of the code. A separate microprocessor served as host to

the signal processor, communicated with the surface electronics and controlled the

operation of the data acquisition board. In addition, this microprocessor formatted

the decoded data and sent a reduced data set to the surface for storage.

3.1.5 Receive

The sonar data from all underwater units arrived at the surface on serial lines and

were combined into a single data stream by the timing and control unit (Fig. 3.4b).

The digital data was passed on to the recording unit at a sustained rate of 176.4

kB/s. This unit was made up of a date and time encoder, a pulse code modulation

encoder, and video cassette recorders. The date and time encoder inserted timing

information directly into the digital stream. In addition, timing information was
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Figure 3.5: Block diagram of the underwater units. Each sonar can transmit,
receive, digitize and decode pseudo-random, phase encoded acoustic signals.

continuously recorded on the audio channels of the video tapes. The pulse code

modulation encoder was a consumer electronics device which converted a video

cassette recorder into a high fidelity digital audio recorder. We have modified the

pulse code modulator by bypassing its internal analog to digital converter so that

it may accept digital instead of analog data. The video output was fed to two

video cassette recorders allowing sixteen hours of autonomous operation. Each

video tape had a total storage capacity of up to 5 GB (8 hours), and was very

cost-effective (a fraction of a penny per MB). A personal computer was used to
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monitor data quality and to control the mode of operation of the sonars.

3.2 Processing

3.2.1 Encoding

The ice-ocean interface is a good reflector of sound. In order to ensure separa-

tion of the refracted and ice-reflected acoustic paths (Fig. 3.1), continuous wave

transmission is not possible. Acoustic pulses must be used with width,

τp <

√
`2 + 4d2 − `

2c
≈ d2

c`
, (3.1)

restricted by range `, depth z, and sound speed c. For example, a 90 µs pulse

permits a 200 m range, 5 m beneath the underside of the ice. A rule of thumb which

has been used in radar work and related fields [7] is that the successful resolution

of a bandpass pulse requires a system bandwidth β satisfying the inequality

β >
1

τp
>
c`

d2
. (3.2)

The transmission signals were encoded both to reduce interference from other

acoustic instruments deployed at the ice camp, and to improve the precision of

the signal amplitude and travel time measurements, given the severe constraint on

pulse width established by (3.1).

The coded signal consists of a binary modulation of the 132.3 kHz carrier by a

127-bit pseudo-random code which is a maximal linear sequence [15]. The binary

transitions are keyed as 180◦ phase shifts of the carrier. Each bit is 12 carrier

cycles long and has a period of 90.7 µs. The complete sequence lasts 11.5 ms.

Table 3.1 summarizes the code and digitizing parameters. A copy of the signal,

sampled at 1.06 MHz and digitally prefiltered with a 22 kHz bandpass filter, is

stored inside the transmit-signal generator. The 22 kHz bandwidth corresponds to
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Parameter Value
Carrier frequency fa (kHz) 132.3

Acoustic signal bandwidth β (kHz) 22
Phase shift used for coding (◦) 180
Digital sampling rate fs (kHz) 44.1

Bit period τp (µs) 90.7
Carrier cycles per bit 12

Digital samples per bit 4
Sequence length T (ms) 11.5

Sequence length (bits) 127
Delay between inphase and quadrature sample (µs) 1.89

Table 3.1: Coded sequence and digitizing parameters.

the main lobe of the [(sin x)/x]2 sequence spectrum, contains 90% of the power in

the overall signal, and comfortably satisfies (3.2).

The autocorrelation of a maximal linear sequence, obtained from a n-bit shift

register, exhibits a triangular peak at zero lag, of height 2n − 1 and duration 2τp,

where τp is the width of each bit. On each side of this peak, there are correlation

sidelobes of length (2n − 2)τp. Fig. 3.6 displays the autocorrelation function of

the pseudo-random sequence used by the acoustic system. In multipath environ-

ments, the correlation sidelobes of a reflection may interfere with the peak of the

direct path. The amount of interference depends on relative amplitude and delay

between each path as a function of time. Under certain conditions, this interfer-

ence establishes an upper bound on the signal-to-noise ratio of the system which

cannot be exceeded even if the transmission power is increased. Depending on the

experimental configuration and the multipath environment, the effects of sidelobe

interference may be eliminated or minimized by changing the length of the code

or adding guard sequences. It is also possible to remove the interference after

the measurements are made. The correction is based on the known shape of the

sidelobes, the linearity of the correlation operator and the relative amplitude and

location of each acoustic arrival.
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Figure 3.6: Autocorrelation of the pseudo-random sequence used by the acoustic
system. The code is generated using a 7-bit shift register. The autocorrelation
function exhibits a triangular peak at zero lag, of height 27 − 1 and duration 2τp,
where τp is the width of each bit. On each side of this peak, there are correlation

sidelobes with peak amplitude smaller than
√

27 − 1 and duration (27 − 2)τp.

3.2.2 Sampling and Decoding

The sampling scheme recovers the in-phase si(t) and quadrature sq(t) components

of the acoustic signal relative to the carrier. In-phase samples are collected once

every third carrier cycle at fs = fa/3 = 44.1 kHz, i.e. four times per code bit.

There is a (4fa)
−1 = 1.89 µs delay between each in-phase and the corresponding

quadrature sample. This digitizing scheme effectively mixes down a 44.1 kHz

bandpass signal centered at fa = 132.3 kHz to a 22 kHz lowpass equivalent. This

bandwidth is twice that of the acoustic signal, therefore the code information is

preserved. The amplitude A(t) and phase φ(t) of the signal may be recovered from

A(t) =
√

s 2
i (t) + s 2

q (t) (3.3)
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and

φ(t) = arctan
sq(t)

si(t)
, (3.4)

as a function of time t.

During normal operation, real-time decoding of the digitized acoustic signals

is accomplished at each sonar by the vector signal processor. An unfiltered copy

of the code, sampled at 44.1 kHz, is used as a decoding template, and short guard

sequences are appended on either side. In-phase and quadrature samples are con-

tinuously correlated with this template. The overlap-save method [66] is used for

performing fast correlation in the frequency domain. The signal processor also

computes magnitude squared and lowpass filtered time-series. Synchronization

between transmission and reception is achieved by using a common clock. The

process gain G is a function of bandwidth β and the total length of the sequence

T :

G = 10 log βT = 24 dB. (3.5)

Finally, it must be noted that the quadrature sampling scheme increases the signal-

to-noise ratio by an additional 3 dB over and above the process gain defined by

(3.5).

3.2.3 Reduction, Storage and Monitoring

The communications processor, contained in each sonar, is programmed to initial-

ize, test and monitor the data acquisition electronics and the vector signal proces-

sor, and to communicate with the surface. Under normal operation, it locates four

peaks in each block of data. For each set of 512 complex 16-bit samples, 85 data

words are produced which preserve most of the useful information contained in

the decoded signal. This results in a data reduction rate of twelve to one thereby

decreasing the required storage bandwidth.

The reduced data from all the sonars are multiplexed into a single data stream

at the surface and stored on video tapes. A personal computer is used to monitor
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data quality. During data collection, short samples are written on to disk and

subsequently analyzed to verify correct operation of the acoustic system. When

the system is not actively monitored by the operator, a background program is used

to continuously sample the data and to correct irregularities and malfunctions.

3.2.4 Correlation Peak Interpolation

During post processing, the data is processed in two steps. First, each tape is read

at the same rate at which it was written using a pulse code modulation encoder

and personal computer. For specified acoustic paths, the location and amplitude

of the correlation peaks are obtained using the scheme described in this section.

In a typical run, the program will read a 5 GB (8 hour) tape, create a 20 MB file

containing information about two dozen acoustic paths, and store this information

on erasable optical disk cartridges. A second computational pass is required to

convert these data files into time series of amplitude, travel time, path-averaged

velocity and relative vorticity as discussed in the next section.

Peak location and amplitude must be interpolated from five data points sur-

rounding the top of each peak. The phase of the acoustic arrival relative to that

of the transmitted signal is then used as a vernier scale to improve the estimate of

location to within a fraction of a carrier cycle. There is an inherent 360◦ ambiguity

in the measurement of phase using (3.4). Therefore, the interpolation scheme must

estimate peak location within half a carrier cycle using data points that are spaced

three carrier cycles apart (Table 3.1). The problem is further complicated by the

presence of noise and the necessity of implementing the algorithm on data being

read at a sustained rate of 176.4 kB/s.

As discussed earlier, the correlation peak exhibits a triangular shape that has

a width equivalent to two code bits, or in this case eight data points. The simplest

solution for the interpolation problem is a triangular fit through the five recorded

data points surrounding each peak. The limited system bandwidth smoothes the

peak, so that this approach does not provide the required accuracy.
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As discussed in Section 2.1.2, the cross-correlation between input x and output

y of a system may be expressed as (2.21)

Rxy(τ) = h(τ) ∗ Rx(τ), (3.6)

the convolution of the impulse response h(τ) with the autocorrelation function of

the input signal Rx(τ) as a function of delay τ = t − t◦, where t◦ is the location

of the peak. To a good approximation, the acoustic system is characterized by a

band limited frequency response,

H(f) =

{

1 if −τ−1
p ≤ f ≤ τ−1

p

0 otherwise
, (3.7)

where H(f) is the Fourier transform of h(τ). The coded sequence has a triangular

autocorrelation function

Rx(τ) =











A (1 + τ/τp) for −τp ≤ τ < 0
A (1 − τ/τp) for 0 ≤ τ ≤ τp
0 otherwise

. (3.8)

We solve this set of equations to obtain an expression for the shape of the cross-

correlation peak,

Rxy(t) = A
∞
∑

n=0

an

(

t− t◦
τp

)2n

, (3.9)

a polynomial with coefficients an. The amplitude A and location t◦ are deter-

mined from the five recorded data points surrounding the correlation peak using

a nonlinear curve fitting algorithm (Appendix A). This second approach gives

optimal accuracy, but could not be implemented at the required data rate using

the available hardware.

In between these two extremes, there exist a number of other approaches repre-

senting a compromise between accuracy and computational complexity. We used

linear least squares to fit the five data points to a quadratic,

Rxy(t) = Aq

[

1 −
(

t− t◦
B

)2
]

, (3.10)
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where 2B is the width of the peak at its base, Aq the amplitude and t◦ the location

(Appendix A).

3.2.5 Velocity and Vorticity Evaluation

The second computational pass converts data files into time series of amplitude,

travel time, path-averaged velocity and relative vorticity. Velocity is obtained

using reciprocal travel time difference. The travel time from point P1 to P2 is

t12 =
`12

c̃12 + ũ12

, (3.11)

where c̃12 and ũ12 are the path-averaged sound speed and fluid velocity respectively,

along the ray joining P1 with P2, and `12 is the range. Assuming that c̃12, ũ12 and

`12 remain momentarily unchanged, the travel time in the reciprocal direction is

t21 =
`12

c̃12 − ũ12

, (3.12)

and the travel time difference is

∆t12 = t21 − t12 =
2 ũ12 `12

(c̃12)2 − (ũ12)2
≈ 2 ũ12 `12

(c̃12)2
, (3.13)

since u � c. The sum of the reciprocal travel times Σt12 = t12 + t21 is used to

eliminate either `12 or c12 from (3.13) and solve for the path-averaged velocity,

ũ12 =
∆t12
Σt12

c̃12 ≈
2∆t12
(Σt12)2

`12. (3.14)

Vorticity is obtained using the method proposed by Rossby [68]. The line

integral of fluid motion between points P1 and P2 can, under the assumptions

made above, be written as

∫ P2

P1

u · ds = ũ12 `12 =
(c̃12)

2

2
∆t12, (3.15)
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where u is the velocity vector and s is a unit vector along the acoustic propagation

path. Therefore, the circulation around triangle P1P2P3 is

Γ =
∮

u · ds = ũ12 `12 + ũ23 `23 + ũ31 `31

=
(c̃12)

2

2
∆t12 +

(c̃23)
2

2
∆t23 +

(c̃31)
2

2
∆t31. (3.16)

From Stoke’s theorem, the circulation is equivalent to the surface integral of the

normal component of vorticity. If the triangle lies on a horizontal plane, the

circulation is
∮

u · ds =
∫ ∫

(∇× u)z dx dy = ζzAT , (3.17)

the product of the average vertical component of relative vorticity ζz, with the area

of the triangle AT . Assuming that c̃12 ≈ c̃23 ≈ c̃31 ≈ c̃, (3.16) and (3.17) yield

ζz ≈ c̃ 2

2AT

(∆t12 + ∆t23 + ∆t31). (3.18)

A consequence of the above equation is that for a desired resolution in vorticity,

the travel time difference must be measured with a precision that is inversely

proportional to the square of the dimension of the acoustic array.
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Chapter 4

Observations

4.1 Field Trip Summary

We deployed the acoustic system at the CEAREX oceanography ice camp during

March and April 1989. The six underwater units were deployed at two separate

depths at the vertices of an equilateral triangle with sides of length 201, 205 and

211 m. The acoustic array was laid out beneath the floe so as to span both

multiyear and young ice, thus providing contrasting turbulence regimes (Fig. 3.2).

Each underwater unit comprised two transducers and accompanying electronics

mounted on a heavy iron bar laid out horizontally beneath the ice. The nominal

separation between the paired transducers was 65 cm (Fig. 3.3). Multiconductor

cables were laid out to connect the sonars with surface instrumentation contained

in a centrally located hut.

The deployment of the first six sonars at a depth of 20.4 m beneath the sea

surface (18 m from the ice bottom) was completed on March 29. Data collected in

this configuration was monitored and analyzed during the next three days in order

to ensure proper operation of the apparatus. Although, the analysis and physical

interpretation of the data could not be done in the field, a personal computer with

a custom interface card was used to monitor and validate the data during operation

of the acoustic instrumentation.

The next six sonars were deployed 10.4 m beneath the surface (8 m from the
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ice bottom) on April 2, 3 and 4 respectively. On April 14 and 15, three pairs

of transducers were raised to 8 m and the other three lowered to 85 m in order

to study processes near the top and the bottom of the mixed layer. The 85 m

data will not be discussed in this thesis because travel time measurements at that

depth are not reliable due to instrumentation problems during the experiment.

Specifically, the sonar clock signals were contaminated by electrical crosstalk during

transmission. To get around this problem, we have relied on the phase of the

acoustic arrivals to track changes in travel time. This works reasonably well for

the shallow moorings because the distance between transmitting and receiving

hydrophones did not usually vary by more than half a wavelength between two

consecutive transmissions. This was not the case for the 85 m depth acoustic data,

for which it was not possible to resolve the 360◦ phase ambiguity.

The sonars and the transducers were recovered on April 22 and 23. During

the period from March 27 to April 23, nearly 350 GB of data were recorded on 71

VCR tapes.

4.2 Noise Analysis

In this section, we establish the sensitivity of the instrument both for phase and

amplitude measurements. First a theoretical lower bound for the ambient noise

level is established. Then the acoustic power projected into the water and received

by the hydrophones is estimated. Finally, the signal to noise performance of the

instrument and its effect on phase and amplitude measurements is discussed.

4.2.1 Thermal Noise

High frequency ambient noise beneath arctic floes is due to thermal tension crack-

ing of the ice and to strong winds. These processes produce a noise spectrum which

decays rapidly for frequencies above 6 kHz [16]. A theoretical limit in the detection

of underwater acoustic signals at higher frequencies is imposed by thermal noise.

Mellen [48] derived the thermal noise spectrum from classical statistical mechanics.
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The mean square noise pressure 〈P 2〉 in a frequency band β is

〈P 2〉 =

fc+β/2
∫

fc−β/2

KTρc
4πf 2

c2
df (4.1)

where f is the frequency, K is Boltzmann’s constant, T is the absolute temperature,

ρ is the density and c is the speed of sound. Given

fc = 132.3 kHz
T = −1.83 ◦C = 271.32 ◦K
K = 1.3806 × 10−23 J/◦K
ρ = 1028.2 kg/m3

c = 1439.8 m/s
β = 22 kHz

we obtain a thermal noise level Ln = 71 dB//µPa.

4.2.2 Transmitted and Received Power

Due to severe crosstalk problems between the transmitting and receiving electron-

ics, we were forced to limit the transmitted acoustic power to very small values

during the experiment. Typically, the magnitude of the transmitted analog signal

was measured to be 5 V at the surface. Taking into account cable losses and the

matching transformer and inductor we estimate the voltage at the input of the

transducers to have been 8 V. The transmitting response of the transducers at

132 kHz is roughly 140 dB//µPa/V @ 1 m. Therefore, the transmitted power was

158 dB//µPa @ 1 m (only 50 mW). The spreading loss 20 log `, where ` = 200 m is

the length of the sonic path, was 46 dB. For the oceanographic conditions prevalent

at the time of the measurements, the attenuation coefficient is 41 dB/km. The

acoustic power at reception is typically 104 dB//µPa. The receiving response of

the transducers at 132 kHz is of order -165 dB//V/µPa and the programmable

gain amplifier on the digitization boards was typically set at 56 dB, to obtain a

signal amplitude of order 0.5 V at the input of the analog-to-digital converter.

These values are tabulated in Table 4.1.
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Parameter Value

Surface transmit voltage (V) 5
Transducer transmit voltage (V) 8

Transmitting response (dB//µPa/V @ 1 m) 140
Transmit power (dB//µPa) 158

Transmit power (mW) 50
Sound speed c (m/s) 1440

Acoustic wavelength λa (cm) 1.09
Receiver separation r (cm) 65
Acoustic path length ` (m) 201

Spreading loss (dB) 46
Attenuation coefficient (dB/km) 41

Receive power (dB//µPa) 104
Receiving response (dB//V/µPa) -165

PGA gain (dB) 56
A/D signal level (V) 0.5

Thermal noise level Ln (dB//µPa) 71
System noise level (dB//µPa) 103

Total signal processing gain (dB) 27
Signal to noise ratio SNR (dB) 28

Root mean square phase noise (◦) 2.3
Root mean square noise σt (ns) 48

Table 4.1: Noise and acoustic parameters for typical transmit-receive sonar pair.

4.2.3 Signal to Noise Ratio

Typical signal-to-noise-ratio for a transmit-receive pair of transducers was mea-

sured to be of order 28 dB during the experiment. This corresponds to an rms

phase noise of 2.3◦. Since the signal level is known, we deduce that the operat-

ing noise at the receiving sonar is equivalent to 103 dB//µPa of ambient sound.

This value is consistent with measurements made in the lab prior to the exper-

iment and is 32 dB greater than the predicted thermal noise level calculated in

Section 4.2.1. Therefore, sonar components and their interaction impose a limit

on acoustic detection and not ambient sound. The transmit (Tx) and receive (Rx)

characteristics of each sonar vary, resulting in different signal-to-noise-ratio (SNR)
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Tx Rx SNR σt σv

(dB) (ns) (mm/s)

2 7 17 167 1.8
7 2 27 53
2 12 13 263 2.8
12 2 28 48
10 7 20 118 1.6
7 10 22 94
10 12 13 255 2.8
12 10 22 92
2 6 20 114 1.3
6 2 26 60
10 6 26 60 1.0
6 10 23 82
7 6 27 54 1.4
6 7 20 125
12 6 26 58 3.2
6 12 12 304

Table 4.2: Signal to noise ratio and rms noise at the 20-m depth.

for each combination. The measured SNR for each Tx-Rx pair are tabulated in

Table 4.2.

4.2.4 Velocity and Vorticity Noise Level

The instrument noise for each transducer is independent from noise at other lo-

cations; therefore, the variance of the noise for travel-time difference is equal to

the sum of the mean squared noise of the two reciprocal transmissions. Using this

assumption and (3.14), it is possible to estimate the rms noise for velocity mea-

surements, σv; the results of these calculations are tabulated in Table 4.2. It is also

possible to estimate the rms vorticity noise using (3.18) with AT = 18327 m2. For

example, the rms noise for relative vorticity calculated around transducers 2, 6 and

7 is 1.5×10−5 s−1, approximately 10% of the planetary vorticity f = 1.45×10−4 s−1

at latitude 83◦N. By averaging over several samples, the rms noise level can be re-
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duced.

4.3 Sources of Error

4.3.1 Temporal Variability

For the derivation of (3.14) and (3.18), it was assumed that sound speed and flow

field, along the acoustic propagation paths, do not change during the time required

for reciprocal transmission. Although this assumption is only an approximation,

we find that in the turbulent boundary layer beneath the ice camp, the effect of

spatial and temporal variance on measurement accuracy, was small compared to

other sources of error.

4.3.2 Error Due to Shear

In the presence of shear, an error is caused by lack of reciprocity of the acoustic

paths. This effect causes the familiar “carrying” of sound by surface wind. If the

wind blows from the source towards the listener, the surface friction establishes a

shear which bends the acoustic rays downward, thus forming a sound channel; the

effect is particularly noticeable over a smooth surface such as calm water where

there is little scattering as the sound bounces off the water. However, a wind

blowing against the propagation direction deflects the rays upward and the sound

is “lost”. It can be shown that for vertical shear σ, range ` and sound speed c, the

sum of the reciprocal travel times is decreased by σ2`3/24c3, and the maximum

separation between the reciprocal rays is σ`2/4c (Appendix B). For σ = 10−3 s−1,

` = 200 m and c = 1440 m/s, the error in the total travel time (≈ 112 ps) and

the maximum separation between the reciprocal acoustic paths (≈ 7 mm) are

insignificant.
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4.3.3 Alignment of the Array

A significant error may be caused by vertical shear if the array is not horizontal.

Consider a shear induced horizontal vorticity component

ζx =
∂w

∂y
− ∂v

∂z
(4.2)

in an orthogonal coordinate system x y z. In a rotated coordinate system x′ y′ z′,

there is an apparent vertical vorticity component

ζz′ = −ζx sin θ (4.3)

where θ is the angle between axis z and z′. For example, a typical vertical shear

∂v/∂z = 10−3 s−1 will cause an apparent vertical vorticity ζz′ = 10−6 s−1, less than

1% of the planetary vorticity, for an inclination θ = 3′30′′. This angle is equiva-

lent to a 20 cm depth misalignment of the array over 200 m. The uncertainty in

the depth of the moorings during deployment was less than ±2 cm. Depth mis-

alignment may also have occurred during the experiment because of the swinging

motion of the moorings. The amplitude of the relative mooring motion at 20 m

depth was less than 20 cm. This corresponds to a worst case relative change in

depth of 1 mm. Therefore, the expected error due to misalignment of the acoustic

elements is less than 0.1% of the planetary vorticity.

4.3.4 Multipath Interference

The accuracy of the acoustic measurements is limited by interference from the

multipath environment. During the experiment we found that the acoustic signal

reflected by the ice was of comparable strength to the direct path. Under the

smooth ice of the newly refrozen lead, the reflected path was at times 20 to 30%

stronger than the direct path. The smoothly varying surface of the underside of

the ice, can under certain circumstances behave like a large concave mirror that

focuses acoustic energy. Mooring motions bring the transducers in and out of
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acoustic focus relative to each other. As discussed in Section 3.2.1, interference

from the correlation sidelobes of the ice-reflected acoustic arrivals establish an

upper bound on the signal to noise ratio that can be achieved by the acoustic

system.

4.3.5 Mooring Motion

Mooring motions during the measurement time frame introduce an error, δt, in

reciprocal travel time difference. The magnitude of this error as a function of

angular frequency, ω = 2πf , is bounded by

δt(ω) ≤ ωM(ω)τtr
c

, (4.4)

where M(ω) is the amplitude of the relative mooring motion and τtr is the delay

between transmission and reception of a reciprocal pair of pulses. From (4.4),

it follows that the error introduced by mooring motion has zero average and is

limited to the high frequency end of the spectrum. For this reason, the moorings

were designed so as to minimize strumming and high frequency oscillations.

4.4 Travel Time

Acoustic travel time between transducers is measured to within a small fraction of

the carrier period (τa = 7.56 µs) by first interpolating the location of the transmit

and receive peaks to resolve the phase ambiguity and subsequently using phase

to provide high resolution measurements. An unfiltered twenty minute time series

of travel time between two transducers located at a depth of 8 m is shown in

Fig. 4.1. The average value of 146.83 ms indicates a mean separation of 211 m.

The oscillations are principally caused by relative mooring motion resulting in

displacements of up to 4 cm in this short data section.

The autospectral density function of acoustic travel time for an eight hour time-

series, which includes the section of data of Fig. 4.1, is shown in Fig. 4.2. At high
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Figure 4.1: Acoustic travel time between two transducers at the 8.4-m depth,
separated by 211 m in a direction of 344◦ T, for data collected in the boundary
layer on April 18, 1989. The oscillations are a result of relative mooring motion
and correspond to displacements of up to 4 cm.

frequency, there is a white noise floor at a level of 7×10−3 µs2/Hz. We attribute this

noise floor to multipath interference with line-of-sight reception. For decreasing

frequency, the spectral density sharply rises to 1.5 µs2/Hz at ωr/2π = 0.133 Hz

which is the mechanical resonance frequency of the 8-m moorings. At still lower

frequency, the spectrum increases more gradually.

Relative mooring motion can be determined by analyzing the travel time of

acoustic pulses. To a first approximation, each mooring behaves as a damped

pendulum oscillator with a forcing term introduced by currents beneath the ice.

For small displacements, and linear damping, the horizontal motion of a forced

pendulum, is controlled by,

d2x

dt2
+ 2γ

dx

dt
+ ω 2

◦
x =

F (ωf)

m
cosωf t, (4.5)
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Figure 4.2: Autospectral density function of acoustic travel time at the 8.4-m
depth. The data consist of an eight hour time series sampled at 1.1 Hz on April
18, 1989. The dashed lines enclose the 95% confidence interval of the spectrum.
The solid line is a theoretical prediction of mooring motion.

where γ is the damping constant, ω◦ = (g/z)1/2 is the natural angular frequency,

z the deployment depth below the bottom of the ice, m the mass, ωf the forcing

frequency, and F (ωf) the forcing term [1]. The flow field provides forcing, and the

system oscillates with amplitude

M(ωf ) =
F (ωf)/m

√

(ω 2
f − ω 2

◦
)2 + 4γ2ω 2

f

, (4.6)

which is equal to F (ωf)/mω
2
◦

at low frequencies, has a local maximum at the

mechanical resonance frequency wr =
√

ω 2
◦
− 2γ2, and varies as F (ωf)/mω

2
f at

high frequencies.

In addition to simple swinging, the moorings have a rotational mode of oscilla-

tion (Fig. 3.3). The natural frequency of rotation decreases down to a minimum of
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ω◦ = (g/z)1/2, as the weights are moved towards the edges of the suspended steel

bars. We neglect this mode of oscillation for two reasons. First, the transducers

are centered on the iron bar; therefore, their position relative to other moorings

depends primarily on swinging rather than rotation. Second, most of the weight

is concentrated at the edges of the steel bars; therefore, the natural swinging and

rotational frequency are almost equal and their spectral signatures on one-way

travel time are indistinguishable.

We assume that the mooring motions of the transmitting and receiving trans-

ducers are statistically independent, which is certainly true at sufficiently high

frequency. Therefore, the spectral contributions to travel time from the motion of

the two moorings add up algebraically. The solid line in Fig. 4.2 is a theoretical

prediction of the spectrum, obtained using (4.6) and a Kolmogorov inertial sub-

range (Section 5.2.1) forcing term F 2(ωf) = F 2
◦
ω
−5/3

f . The natural frequency of

oscillation ω◦, and the forcing constant F◦ are chosen to optimize the fit between

data and theory at high frequency. The model successfully predicts the steep

−17/3 spectral slope at high frequency and the presence of a local maximum in

the spectrum due to mechanical resonance of the moorings.

At low frequency, the inertial subrange approximation does not hold and we

expect a spectral slope that is less steep than -5/3. Instead, the model underes-

timates the spectral intensity. In addition, the natural frequency used to fit the

model to the data, ω◦/2π = 0.14 Hz, is lower than (g/z)1/2 = 0.17 Hz, the ex-

pected frequency based on deployment depth. We attribute these discrepancies to

the nonlinear dependence between the forcing and damping terms, and the flow

field.



59

4.5 Path-Averaged Current

4.5.1 Accuracy

Path-averaged current measurements are based on travel time difference of recip-

rocal acoustic propagation. Therefore, the accuracy of the current measurement is

ultimately limited by the precision with which travel time can be measured in both

directions. Another factor limiting the accuracy of the measurements is relative

mooring motion as discussed in Section 4.3.5.

Fig. 4.3 displays the autospectral density function of path-averaged velocity

measurements obtained at 8 m depth for the same eight hour period as Fig. 4.3.

At high frequency, there is a white noise floor at a level of 5×10−3 (cm/s)2/Hz,

which corresponds to the combined noise floor of the two reciprocal travel time

measurements. Near the mechanical resonance frequency of the moorings, the

error introduced by relative motion during a reciprocal transmission dominates

the velocity measurements. The autospectral density of the error due to mooring

motion is estimated using (4.4) and drawn as a solid line on the figure. Clearly, the

peak in the spectral density at 0.133 Hz is caused by relative mooring motion. For

frequencies lower than 0.07 Hz, the error caused by mooring motion drops below

the spectral level of path-averaged currents.

An alternative analysis of mooring motion effects is based on the coherence

function between one-way travel time and velocity, shown in Fig. 4.4. The co-

herence of the two signals is high in the neighborhood of mechanical resonance;

at frequencies below 0.07 Hz, low coherence confirms that mooring motion is not

an important factor. All velocity and vorticity data is lowpass filtered to remove

the error due to mooring motion. Assuming Gaussian white noise with a spectral

density of 5×10−3 (cm/s)2/Hz, equivalent to that observed at high frequency, the

rms noise level is less than 0.1 mm/s at a filtered sampling rate of once per minute.
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Figure 4.3: Autospectral density function of path-averaged velocity measurements
at the 8.4-m depth, for the same eight hour period as Fig. 4.2. The dashed lines
enclose the 95% confidence interval of the spectrum. The solid line is an estimate
of error due to relative mooring motion during a reciprocal transmission.

4.5.2 Spatial Filtering

Each acoustic path acts as a path-averaging spatial filter which damps small scale

fluctuations and focuses on low wavenumbers. The path-averaged velocity along

baseline ` is

ũ(x, t) =
1

`

`/2
∫

−`/2

u(x + s, t) ds, (4.7)

where s is a vector parallel to ` with magnitude s. For events coherent along the

acoustic propagation path, the spatial-filter response of the path-averaging current

meter is

H(k, `) =
ũ(k, t)

u(k, t)
=

sin(k · `/2)

k · `/2 , (4.8)
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Figure 4.4: Coherence function between one-way travel time and velocity at 8.4-m
depth, for the same eight hour period as that of Fig. 4.2.

where ũ(k, t) and u(k, t) are the spatial Fourier transforms of ũ(x, t) and u(x, t),

respectively, that is

u(x) =

∞
∫

−∞

exp(ik · x)u(k) dk, (4.9)

and

u(k) =
1

(2π)3

∞
∫

−∞

exp(−ik · x)u(x) dx. (4.10)

The length of the measuring baseline during the arctic experiment was ` = 200 m,

therefore the acoustical current meter was a lowpass spatial filter with cutoff wave-

length λ◦ = 450 m and zero phase shift in the passband.
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4.5.3 Directional Filtering

Each acoustic path also acts as a directional filter with preference given to velocity

fluctuations parallel to the measuring baseline. Consider a flow field

U(x, t) = U + u(x, t), (4.11)

where U is the mean ice-relative velocity vector, and u(x, t) represents fluctuations

about the mean. The velocity measured by the acoustical current meter is

Ũθ(x, t) = [U + ũ(x, t)] · `/`, (4.12)

where ũ(x, t) is as defined by (4.7), and `/` is a unit vector parallel to the measuring

baseline.

4.5.4 Doppler Shift

The motion of the instrument relative to the medium that supports the disturbance

introduces a Doppler-frequency shift in the measurement. Consider the sinusoidal

disturbance

u(y, t) = u◦ cos(k · y − ωt), (4.13)

riding the ice-relative mean velocity vector U. Here, y is a Cartesian coordinate

system moving with velocity U relative to the ice, u◦ is the vector amplitude of

the wave, k is the wave vector with magnitude k = 2π/λ, and ω = 2πf is the

radial frequency of the wave. The velocity measured by an instrument deployed

from the ice is

U(x,t) = U + u◦ cos[k · x − (ω + k · U)t], (4.14)

where x is a Cartesian coordinate system fixed with respect to the measuring

platform and k ·U is the Doppler-frequency shift. This frequency shift is negligible

when

k ·U
k

� ω

k
, (4.15)
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i.e. when the mean ice-relative velocity parallel to the wave vector is negligible

compared to the phase speed of the wave.

4.5.5 Comparison with Point Measurements

McPhee [46] reports that 7 m below the ice, the significant turbulent eddies for heat

and momentum transfer in the boundary layer have typical horizontal extent of

order 10-20 m. Therefore, the acoustic current meter averages over several eddies

with each sample and attenuates velocity fluctuations due to turbulence. Fig. 4.5

compares path-averaged current measurements with point measurements made by

M. G. McPhee (1990, personal communication), using a mechanical current meter

located in the middle of the acoustic array. The solid line represents velocity data

from the acoustic path oriented 344◦ T, low pass filtered at 0.5 min−1. The dots are

one minute averages from the mechanical current meter. The scatter of the point

measurements is a result of the high spatial resolution of the mechanical current

meter, which has a sampling wavelength of 20 cm [44], and the turbulent nature

of the ice-water boundary layer. For periods greater than 20 min, the frequency

response function between the two types of measurement has constant phase factor

(≈ 0◦), and the coherence function is relatively high (> 0.5).

Each side of the acoustic array preferentially detects internal waves whose

wavevectors are aligned with the axis of acoustic propagation. Kinetic energy

from internal waves that are not aligned with the acoustic path is attenuated and

aliased to lower frequencies. A rough theoretical estimate of the transfer function

between point and line-averaged measurements is obtained by assuming the mean

flow is negligible compared to the dispersion velocity of internal waves and that

the internal waves propagate parallel to the acoustic path.

The solid line in Fig. 4.6 is the observed gain factor of the frequency response

function between path-averaged and point measurements. The dotted line repre-

sents a theoretical prediction based on the spatial resolution of the acoustic array
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Figure 4.5: Comparison between path-averaged and point current measurements.
The solid line is a velocity time series obtained with the acoustic current meter at
the 8.4-m depth, 344◦ T, on April 17 and 18 (day 107 and 108), 1989. A 0.0083 Hz
lowpass filter has been applied to the data. The dots are one minute averages from
a mechanical current meter which has a spatial resolution of 20 cm; the current
meter was located in the center of the acoustic array at a depth of 10.4 m.

given by (4.8) and a two layer fluid internal wave dispersion relation,

ω2 =

(

ρ2 − ρ1

ρ2 + ρ1

)

gk, (4.16)

where ρ1 = 1027.47 kg/m3, and ρ2 = 1027.87 kg/m3 are the mean water densities

above and below the pycnocline as measured during the experiment [62]. Both

the measured and the calculated transfer function show strong attenuation for

periods shorter than 20 min. The 2 dB difference between the acoustic current

measurements and the fixed point measurements at low frequency results from

the less than perfect coherence between the two time series. We attribute this

discrepancy to local flow anomalies caused by irregularities in the underside of the

ice. At high wavenumbers, equation (4.8) does not hold because we cannot assume
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Figure 4.6: Gain factor of frequency response function between the path-averaged
and point measurements of Fig. 4.5. The dotted line is a theoretical prediction
based on the spatial resolution of the acoustic array and a two layer fluid internal
wave dispersion relation.

coherence along the entire acoustic path, as is further discussed in Chapter 5.

4.6 Vorticity

The vertical component of relative vorticity at internal wave length scales is diffi-

cult to measure with conventional instrumentation, and we are not aware of other

successful attempts to measure this parameter in the boundary layer beneath ice.

As discussed earlier, the average vorticity inside the triangle spanned by the acous-

tic array is readily obtained from reciprocal travel time measurements. Based on

the accuracy of current measurements, the rms noise of the vorticity signal av-

eraged over one minute is less than 1% of the planetary vorticity. Examples of

vorticity time series and spectral density functions can be found on Figs. 8.5, 8.6d

and 8.9 in Chapter 8.
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Chapter 5

Reciprocal Travel-Time

Scintillation Analysis

5.1 Introduction

In Chapter 4, we determined that the power spectrum of the integrated velocity

measurements is dominated by multipath interference and mooring motion for pe-

riods shorter than 20 s. For periods longer than 20 min, the passage of internal

waves in stratified water underlying the mixed layer dominates the spectrum as

discussed in Section 4.5.5, and again in Chapter 8. The aim of the present chapter

is to explain the observed high frequency velocity fluctuations which are neither

the result of internal waves nor of measurement error, and which were tentatively

attributed to the advection and evolution of turbulent velocity fine structure. Ex-

isting theory needs to be extended before it is useful in this context. It will be

shown that line-averaged velocity measurements can provide statistical information

about the velocity fine structure of the intervening fluid, even when the measuring

baseline is many times longer than the size of the turbulent eddies.

Turbulence in the ocean is usually measured with instruments that have a high

degree of spatial resolution and can therefore sense individual turbulent eddies.

But, for most oceanographic studies, the statistical description of a fluid is more

important than information about the behaviour of each eddy sensed by the in-

strument. Of course, Taylor’s frozen field hypothesis (Section 5.2.4) can be used to
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obtain streamwise correlation functions from high resolution point measurements.

The problem is that point measurements may be unduly influenced by local inho-

mogeneities of the flow and are not always representative of the true areal average.

An alternative strategy involves integral measurements obtained along a base-

line that is long compared with the size of the turbulent eddies. This scheme

forfeits the observation of individual eddies in favour of a more representative sta-

tistical description of the turbulent fluid. A convenient way of obtaining integral

measurements of random fields in the ocean is to use acoustic remote sensing tech-

niques. For example, forward scattered sound provides the basis for probing the

fine structure along the acoustic path. Sound traveling through a medium having

random fluctuations in refractive index suffers perturbations which cause ampli-

tude and phase scintillations on a receiving plane. The interpretation of these

scintillations in terms of the structure of the intervening fluid has been the subject

of considerable theoretical [22] and experimental effort [20].

Reciprocal acoustical travel time measurement is another remote sensing method

which can provide integral measurements of random fields in the ocean. This tech-

nique can be used to separate the effects of ocean currents on acoustic propagation

from the effects of sound speed structure, and successful measurements have been

made along sonic paths ranging from a few centimeters to several hundred kilome-

ters. Ultrasonic current meters based on the principle of reciprocal transmission

have often been used to study turbulence in the ocean [34]. However, the sonic

pathlengths were always of the same order of magnitude as the smallest turbulent

scales to be resolved. Reciprocal acoustic transmission can also be used to study

the statistical behaviour of the internal wave field [54], to monitor mesoscale ocean

currents [83] and to measure relative vorticity [32]. However, to the best of our

knowledge, the technique has never been applied at intermediate pathlengths, i.e.

hundreds of meters, to probe the velocity fine structure of the intervening fluid.

The potential of such measurements remains largely unexplored both theoretically

and experimentally.



68

Kaimal et al. [31] discussed the problem of line-averaging in the context of ex-

tending the useful range of sonic anemometers in the atmosphere to scales shorter

than the acoustic paths. They derived transfer functions that relate measured and

ideal one-dimensional power spectra. Here, we add to existing theory in the fol-

lowing ways. Measuring baselines that are several orders of magnitude longer than

the typical transducer separation of sonic anemometers, i.e. hundreds of meters

as opposed to tens of centimeters, are considered. Kaimal et al. derived expres-

sions that link horizontal power spectra obtained from two non-parallel sonic paths

to the ideal streamwise and cross-stream spectral densities. This is adequate for

short and closely spaced sonic paths. A different approach is required for the long

pathlengths considered in this paper. The spectral transfer function derived here

requires a single acoustic path and is valid for arbitrary angles between the baseline

and the mean flow. The asymptotic behaviour of the spectral transfer function is

investigated for long measuring baselines; an analytic expression is derived and

compared to the numerical solution. In addition to the homogeneous isotropic

case considered by Kaimal et al. the analysis here is extended to anisotropic and

inhomogeneous flows. First, the spectral transfer function for axially symmet-

ric turbulence is derived. Next, it is shown that for sufficiently long measuring

baselines, spectral transfer functions are inversely proportional to a dimension-

less wavenumber. Finally, the condition of homogeneity is relaxed by considering

measurements that span several regions of locally homogeneous turbulence.

Taylor’s frozen field hypothesis is often used to relate measured time spectra

to spatial correlations. This hypothesis is valid provided the temporal evolution

of turbulent fine structure at a fixed location is negligible relative to fluctuations

caused by advection of the flow. Wernik et al. [78] studied the effects of non frozen

turbulent media on one-way propagation experiments. Here, the applicability of

the frozen field hypothesis to reciprocal travel time measurements is examined.

First, some criteria for applying Taylor’s hypothesis to shear flows are established.

Then, correction formulas for the spatial and temporal variability of advection



69

velocity along the measuring baseline are derived. Refractive index variability and

turbulent shear along the path cause scattering of the acoustic energy. The effect

of this scattering on the accuracy of the measurements is considered. Finally, some

experimental data obtained in the arctic boundary layer beneath ice is compared

with the theory.

5.2 Theory

5.2.1 Basic Definitions and Assumptions

The statistical description of turbulence is discussed extensively in the literature

[29, 42, 3]. Here, we are merely concerned with introducing the concepts and

notation necessary to our discussion. Additional background material regarding

the statistical description of random fields can also be found in Section 2.1.

We consider the random velocity field u(x, t), that has zero mean and is sta-

tionary in x (homogeneous) and t. This field is advected along the x1-axis of a

Cartesian coordinate system, by the mean velocity vector, U, so that

U(x, t) = U + u(x, t), (5.1)

where the overbar denotes time-averaging. A more complete discussion of this

type of decomposition is given in Section 2.1.3. We follow the usual convention

of representing vectors in boldface, their magnitude in italics and the individual

components by using subscripts. For example, the vector x has magnitude x and

components xi where i = 1, 2, 3.

Fourier-Stieltjes integrals

One would like to have a spectral representation for the random function u, but

homogeneity implies that

∞
∫

−∞

|ui(x)| dx = ∞, (5.2)
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i.e. Dirichlet’s condition is not satisfied, and no valid Fourier transform exists. To

avoid this difficulty, stochastic Fourier-Stieltjes integrals are used to represent the

turbulent velocity field,

ui(x, t) =

∞
∫

−∞

exp(ik · x) dZi(k, t), (5.3)

where k is the vector wavenumber. The Zi(k, t) are random functions with orthog-

onal increments,

dZi(k, t) dZ
∗
j (k′, t) =

{

0, k 6= k′

ϕij(k) dk, k = k′ , (5.4)

where the asterisk indicates complex conjugate and ϕij(k) is the spectral density

tensor. The correlation tensor, Rij(r), is related to the spectral density tensor by

Rij(r) = ui(x, t)uj(x + r, t) =

∞
∫

−∞

exp(ik · r)ϕij(k) dk (5.5)

and

ϕij(k) =
1

(2π)3

∞
∫

−∞

exp(−ik · r)Rij(r) dr. (5.6)

Three-Dimensional Spectral Density

The three-dimensional spectral density E(k) is the power associated with a par-

ticular scale of motion, λ, and is obtained by integrating ϕij(k) over a spherical

shell of radius k = 2π/λ,

E(k) =
1

2

∫∫

kiki=k2

© ϕii(k) ds, (5.7)

so that
∞
∫

0

E(k) dk =
1

2

∞
∫

−∞

ϕii(k) dk =
1

2
Rii(0) =

1

2
uiui, (5.8)
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where the repeated indices imply summation over i.

Practical Measurements

In practice, Rij(r), ϕij(k), and E(k), are difficult to observe directly. Actual

measurements, and the use of Taylor’s frozen field hypothesis yield streamwise

correlation functions,

Rij(r1) = ui(x, t)uj(x + r1, t) =

∞
∫

−∞

exp(ik1r1)Fij(k1) dk1 (5.9)

and the one-dimensional spectral density tensor

Fij(k1) =
1

2π

∞
∫

−∞

exp(−ik1r1)Rij(r1) dr1 =
∫

∞
∫

−∞

ϕij(k) dk2 dk3, (5.10)

so that
∞
∫

0

Fij(k1) dk1 =
1

2

∞
∫

−∞

ϕij(k) dk =
1

2
Rij(0) =

1

2
uiuj. (5.11)

The definition of Fij(k1) is not uniform in the literature. The form above corre-

sponds to the two-sided spectral density discussed in Section 2.1.2, and is com-

monly used for theoretical work [3, 42, 31]. For experimental work [26, 29, 23],

Fij(k1) is often defined without the factor 1/2 of (5.11), and corresponds to the

one-sided spectral density function discussed in Section 2.1.2.

Power Law Form of the Spectrum

In the wavenumber range of interest, we will assume that E(k) has a power law

dependence on k,

E(k) = Ck−p. (5.12)
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Isotropic Turbulence

For isotropic turbulence,

uiuj = u 2
1 δij, (5.13)

and the spectral density tensor is related to the three-dimensional spectrum by

ϕij(k) =
E(k)

4πk4
(k2δij − kikj). (5.14)

Kolmogorov Inertial Subrange

Kolmogorov postulated that for stationary turbulence at sufficiently high Reynolds’

number there exists a range of wavenumbers, between energy containing and dissi-

pation ranges, in which the turbulence is locally isotropic and the three-dimensional

spectral density, E(k), depends only upon wavenumber k and the dissipation rate

ε. Dimensional arguments lead to the conclusion that in this inertial subrange

E(k) = Aε2/3k−5/3. (5.15)

Empirical evidence suggests an approximate value for the Kolmogorov constant of

A ≈ 1.5 [29]. Although most turbulence is not isotropic [71], (5.15) is a useful

approximation for estimating energy dissipation (Section 5.3.4).

5.2.2 Line-Averaging

Consider velocity measurements integrated along baseline `. Without loss of gen-

erality, we assume that this baseline lies in the x1-x2 plane at angle θ from the

mean velocity vector which is aligned with the x1-axis. For convenience, we define

uθ = u1 cos θ + u2 sin θ, (5.16)

the velocity fluctuations parallel to the measuring baseline, with corresponding

correlation function,

Rθ(r) = uθ(x, t)uθ(x + r, t), (5.17)
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spectral density,

ϕθ(k) = ϕ11(k) cos2 θ + [ϕ12(k) + ϕ21(k)] cos θ sin θ + ϕ22(k) sin2 θ, (5.18)

and one-dimensional spectrum,

Fθ(k1) =
∫

∞
∫

−∞

ϕθ(k) dk2 dk3. (5.19)

Assuming isotropy and a power law dependence for the three-dimensional spectral

density as per 5.12, (5.19) can be solved analytically to yield

Fθ(k1) = Ck−p
1

cos2 θ + p sin2 θ + 1

2p(p+ 2)
. (5.20)

Under this formalism, the streamwise spectrum is

F11(k1) = Fθ(k1)|θ=0◦
= Ck−p

1

1

p(p+ 2)
, (5.21)

and the cross-stream spectrum is

F22(k1) = Fθ(k1)|θ=90◦
= Ck−p

1

p+ 1

2p(p+ 2)
. (5.22)

Clearly, the one-dimensional spectrum functions have a power law form for any

region in which E(k) has a power law form. In an inertial subrange, the streamwise

spectrum,

F11(k1) =
9

55
Aε2/3k

−5/3

1 , (5.23)

is obtained using (5.15), and the cross-stream to streamwise spectral ratio is

F22(k1)

F11(k1)
=
p+ 1

2
=

4

3
. (5.24)
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This last relation is often used in empirical work to test for the existence of an

inertial subrange [23]. The velocity fluctuations observed by the line-averaging

instrument are

ũθ(x, t) =
1

`

`/2
∫

−`/2

uθ(x + s, t) ds. (5.25)

Using (5.3) to solve the path-integral,

ũi(x, t) =

∞
∫

−∞

exp(ik · x)
sin(k · `/2)

k · `/2 dZi(k, t), (5.26)

one obtains an expression for the one-dimensional spectrum of the integrated ve-

locity measurements,

F̃θ(k1) =
∫

∞
∫

−∞

sin2(k · `/2)

(k · `/2)2
ϕθ(k) dk2 dk3. (5.27)

5.2.3 Spectral Transfer Ratio

To investigate the relationship between line-averaged and ideal one-dimensional

spectra, the transfer ratio

T (k1`, θ, p) =
F̃θ(k1)

Fθ(k1)
(5.28)

is defined; it indicates spectral attenuation due to line-averaging as a function of

wavenumber, pathlength, orientation of the measuring baseline relative to the mean

velocity vector, and spectral slope. Conventional path-averaging current meters

have short measuring baselines compared to the scales of interest, k1`→ 0, so that

line-averaged measurements approximate point measurements, T (k1`, θ, p) = 1.

The acoustic pathlength during our arctic experiment was long compared to the

scales associated with velocity fine structure.
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A response function for the path-averaging filter characteristic of the acoustical

instrument was derived in Section 4.5.2. For flow components with coherent phase

along the entire measuring baseline, the instrument behaves as a lowpass spatial

filter with cutoff wavelength λ◦ ≈ 450 m and zero phase shift in the passband.

According to (4.8), the high wavenumber region of the integrated spectrum is

attenuated by a factor of (1/k`)2 or more relative to the true spectrum. This

attenuation would make the measurement of the integrated spectrum difficult if

not impossible at high wavenumbers.

For short wavelengths compared to the separation of the acoustical transducers,

one can no longer assume that the phase of the flow components remains coherent

along the measuring baseline. For this reason, the line-averaging process destroys

phase information at high wavenumbers. Nevertheless, it remains possible to relate

the spectrum of the integrated velocity measurements to the true spectrum as

will be discussed in this section. It will be shown that T (k1`, θ, p) is inversely

proportional to k1` and not (k1`)
2 as is the case for coherent disturbances spanning

the measuring baseline; this makes the measurement of the integrated spectrum

at high wavenumbers possible.

Asymptotic Approximation

When the scales being measured are of the same order of magnitude as the length

of the measuring baseline, k1` ∼ 2π, numerical integration is required to solve for

the spectral transfer ratio. Kaimal [31] solved (5.28) numerically for an inertial

subrange and for θ = 90◦. Here, we consider long measuring baselines compared to

the scales of interest; an analytic solution can be obtained because of the asymp-

totic behaviour of the path-integral (5.27):

∞
∫

−∞

sin2(k · `/2)

(k · `/2)2
ϕθ(k) dk2 =

2π

` sin θ
ϕθ(k1,−k1 cot θ, k3), (5.29)
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for k1` sin θ � 4π. In effect, for large `, the left hand side of (5.29) is a convolution

in k2-space between an impulse function and the spectral density ϕθ(k) (Appendix

C).

Homogeneous Isotropic Turbulence

For homogeneous isotropic turbulence, the asymptotic form of the one-dimensional

line-averaged spectrum is

F̃θ(k1) =
Ck−p

1

k1`

K(p) sinp θ

p
, (5.30)

and the spectral transfer ratio is

Ti(k1`, θ, p) =
Si(θ, p)

k1`
, (5.31)

for k1` sin θ � 4π, where the subscript i of Ti and Si indicates isotropy,

Si(θ, p) =
2(p+ 2)K(p) sinp θ

cos2 θ + p sin2 θ + 1
, (5.32)

K(p) =
Γ(1/2)Γ(p/2 + 1/2)

Γ(p/2)
, (5.33)

and Γ(x) is the gamma function. For an inertial subrange, p = 5/3, and K(5/3) ≈
1.4. In Fig. 5.1, the analytic expression for Ti(k1`, 90◦, 5/3) is compared with the

exact numerical solution. As expected, (5.31) is not valid when the baseline is

short compared with the wavelength of the turbulent eddies being sensed. How-

ever, when k1` > 8π, there is good correspondence between the asymptotic and

the exact solution; the fractional error is less than 7%. Equation (5.31) implies

that line-averaged measurements are inversely proportional to the dimensionless

wavenumber k1`, a result that is generalized to anisotropic flows later in this sec-

tion.
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Figure 5.1: Ratio between line-averaged and true one-dimensional kinetic energy
spectra as a function of the dimensionless wavenumber parameter k1` for isotropic
turbulence. A numerical solution is compared with the analytic expression derived
for high wavenumbers.

Another useful ratio relates F̃θ(k1), the line-averaged one-dimensional spec-

trum, to F11(k1), the streamwise spectrum, that is

Ts(k1`, θ, p) =
F̃θ(k1)

F11(k1)
=
Ss(θ, p)

k1`
, (5.34)

where

Ss(θ, p) = (p+ 2)K(p) sinp θ. (5.35)

Fig. 5.2 displays the dependence of the spectral transfer ratios, Ti(k1`, θ, p) and

Ts(k1`, θ, p), on θ. We observe that the line-averaged measurements are most

sensitive to turbulent fine structure when the measuring baseline is perpendicular

to the vector mean current. When θ is small, some of the assumptions required

by the theory fail. For example, it becomes harder to satisfy k1` sin θ � 4π. In

Section 5.2.4, we also show that Taylor’s frozen field hypothesis is unlikely to hold



78

Figure 5.2: Spectral transfer ratio dependence on the angle between the measuring
baseline and the mean velocity vector. The sensitivity of the measurements is
greatest when θ = 90◦.

at small θ for long measuring baselines.

Axisymmetric Turbulence

The expressions developed so far are valid for homogeneous and isotropic turbu-

lence. We now relax the assumptions of isotropy and homogeneity in stages to

obtain results that are progressively more general. A type of turbulence which is

next to isotropic in order of simplicity, but which is more commonly occurring in

practice is axisymmetric turbulence. Instead of spherical symmetry, or isotropy,

axisymmetric turbulence possesses symmetry about a preferred direction, n. Ax-

isymmetry requires that the mean value of any function of the velocities and their

derivatives be invariant for rotations about n [2]. The proximity of a rigid bound-

ary, such as floating ice, favors horizontal motion. McPhee [46] reports that heat

and momentum flux under ice is typically caused by turbulent eddies that are of
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order 10-20 m in horizontal extent and a few meters in vertical extent. Therefore,

in a given wavenumber range, the flow is more likely to be axisymmetric about the

vertical axis rather than isotropic.

Herring [28] introduced a useful formalism for describing axisymmetric turbu-

lence. The spectral density tensor is expressed in terms of two scalars, ψ(k) and

ψ′(k), the first of which represents the modal kinetic energy transverse to n, and

the second the modal energy perpendicular to both k and n. That is

ϕij(k) = ψ(k)ei(k)ej(k) + ψ′(k)e′i(k)e′j(k), (5.36)

where

e(k) =
k × n

|k × n| , (5.37)

e′(k) =
k × e(k)

|k × e(k)| , (5.38)

and ψ(k), ψ′(k) are axisymmetric scalars. In terms of this formalism, the simplest

possible characterization of axisymmetric turbulence has

ψ(k) =
(1 − a)E(k)

2πk2
, (5.39)

and

ψ′(k) =
aE(k)

2πk2
, (5.40)

where a is a parameter characterizing anisotropy and 0 ≤ a ≤ 1 [69]. Equation

(5.36) can also be written

ϕij(k) = [ψ(k) − ψ′(k)]ei(k)ej(k) + ψ′(k)(δij − kikj/k
2); (5.41)

therefore a = 1/2 implies isotropy. Taking n to be the vertical unit vector and

assuming the energy spectrum has a power law dependence on the wavenumber as
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per (5.12), we obtain the one-dimensional spectra,

Fθ(k1) =
Ck−p

1

p(p+ 1)(p+ 2)
[(b+ ap) cos2 θ + (a+ bp) sin2 θ], (5.42)

and

F33(k1) = aCk−p
1

p+ 1

p(p+ 2)
, (5.43)

where

b = (p+ 2)(1 − a). (5.44)

In Fig. 5.3, Fθ(k1)/Ck
−p
1 is plotted as a function of the measurement angle, θ, and

anisotropy parameter, a, for a spectral slope p = 5/3. By definition, a = 0 implies

that all the turbulent kinetic energy is contained in the horizontal mode of motion.

The figure shows that as a increases, the fraction of turbulent energy detected by

horizontal velocity measurements decreases. The figure also shows that there is a

certain value of a,

a◦ =
p+ 2

p+ 3
= 0.79 for p = 5/3, (5.45)

for which the measured horizontal kinetic energy spectrum does not depend on

measurement angle θ. As θ approaches 90◦, the measured kinetic energy increases

for a < a◦ and decreases for a > a◦.

Fig. 5.4 displays the ratio of cross-stream to streamwise one-dimensional spectra

as a function of the anisotropy parameter a. This suggests an empirical method

for measuring a. If a turbulent flow is axisymmetric about a known direction, then

the cross-stream to streamwise spectral ratio can be used to quantify the departure

from isotropy. As the flow approaches isotropy, a = 1/2, the spectral ratio tends

to 4/3.

Assuming a long measuring baseline, k1` sin θ � 4π, we find an expression for

the line-averaged spectrum,

F̃θ(k1) = 2(1 − a)
Ck−p

1

k1`

K(p) sinp θ

p
, (5.46)
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Figure 5.3: One-dimensional energy spectrum versus measurement angle and
anisotropy parameter.

and the spectral transfer ratio for axisymmetric turbulence,

Ta(k1`, θ, p) =
Sa(θ, p)

k1`
, (5.47)

where

Sa(θ, p) =
2b(p + 1)K(p) sinp θ

(b + ap) cos2 θ + (a+ bp) sin2 θ
. (5.48)

Equations (5.44), (5.47) and (5.48) say that the sensitivity of line-averaged hor-

izontal velocity measurements to turbulent velocity fine structure is a function

both of the measuring angle and of the relative amount of turbulent kinetic energy

contained in the horizontal mode of motion. In Fig. 5.5, we plot Sa(θ, 5/3) as a

function of measuring angle, θ, and anisotropy parameter, a. The spectral transfer

ratio is maximum when the measuring baseline is perpendicular to the vector mean

current and all the turbulent kinetic energy is contained in the horizontal mode of

motion.
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Figure 5.4: Ratio of cross-stream to streamwise one-dimensional spectra as a func-
tion of the anisotropy parameter a.

Fig. 5.6 compares the axisymmetric to the isotropic spectral transfer ratio as

a function of the anisotropy parameter a. We see that for a = 0, i.e. when all

the kinetic energy is contained in the horizontal mode of motion, and θ = 90◦,

i.e. the measuring baseline is perpendicular to the vector mean flow, the spectral

transfer function is 16% higher than for the isotropic case. For other values of θ,

the discrepancy between the isotropic and the axisymmetric spectral transfer ratio

is at most 46% for a < 1/2. Equation (5.47) also says that the spectral transfer

ratio is inversely proportional to the dimensionless wavenumber k1`.

Anisotropic Turbulence

It has been shown that for sufficiently long measuring baselines, k1` sin θ � 4π, the

spectral transfer function, T (k1`) = F̃ (k1)/F (k1), is inversely proportional to the

dimensionless wavenumber k1`, both for isotropic and axisymmetric flows. Here, a

dimensional argument is used to extend this result to fully anisotropic turbulence.
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Figure 5.5: Spectral transfer ratio between line-averaged and point measurements
of velocity as a function of measurement angle and anisotropy parameter.

Consider a baseline of length ` that is split in two pieces of length α and β so

that

` = α + β. (5.49)

The line-averaged velocity along `, ũ, is related to ũα and ũβ, the velocities averaged

along α and β respectively, by

ũ =
αũα + βũβ

`
. (5.50)

Define F̃α(k1) and F̃β(k1) to be the one-dimensional spectra associated with ũα

and ũβ respectively. For k1α and k1β sufficiently large, ũα and ũβ are statistically

independent and in that wavenumber range

F̃ (k1) =
α2F̃α(k1) + β2F̃β(k1)

`2
. (5.51)
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Figure 5.6: Comparison of axisymmetric to isotropic spectral transfer ratio as a
function of the anisotropy parameter a.

Assuming homogeneity, (5.51) can only be satisfied when

`F̃ (k1) = αF̃α(k1) = βF̃β(k1), (5.52)

i.e. the measured spectra are inversely proportional to the averaging length. It

is also known that line-averaged spectra and point spectra share the same units;

therefore, they must be related by a non-dimensional constant, and k1 is the only

relevant parameter that can be used to non-dimensionalize `. This suggests that

at high wavenumbers the spectral transfer function is inversely proportional to the

non-dimensional wavenumber,

T (k1`) ∝
1

k1`
, (5.53)

which is consistent with analytic expressions (5.31), (5.34) and (5.47). This dimen-

sional argument illustrates why attenuation due to line-averaging is proportional
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to 1/k1` when the length scales considered are short compared to the measuring

baseline, and not (1/k`)2 as is the case for coherent disturbances along the entire

measuring baseline.

Inhomogeneous Turbulence

Up to this point, it has been assumed that the turbulent flow is homogeneous.

In this section, the assumption of homogeneity is relaxed by considering measure-

ments that span several regions of locally homogeneous turbulence. Consider a

baseline that traverses two regions with different spectral characteristics; Fα(k1) is

the spectrum associated with the region spanned by α and similarly β spans the

region characterized by Fβ(k1) so that ` = α + β. Using (5.53), the line averaged

spectrum can be written

F̃ (k1) ∝
1

k1`

(

αFα(k1) + βFβ(k1)

`

)

, (5.54)

i.e. the integrated spectrum F̃ (k1) is a true average along the measuring baseline.

The same argument can be made for an arbitrary number of locally homogeneous

regions, provided the scales of interest are small compared to the extent of each

region. For this reason, line-averaged measurements can provide a representative

areal average, in the plane formed by the mean velocity vector and the measuring

baseline, that is not unduly influenced by local inhomogeneities of the flow.

5.2.4 Nonfrozen Turbulence

The interpretation of time spectra in terms of spatial correlations is done by assum-

ing a frozen field pattern advected by the mean flow past a sensor. Alternatively,

the sensor can be moved with a known velocity through a frozen field. This as-

sumption, first introduced by Taylor [74], has been used extensively to infer the

spatial characteristics of turbulence in the atmosphere and the ocean. Here, the

conditions under which the frozen field assumption is justified are reviewed, and
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correction formulas for the spatial and temporal variability of advection velocity

across the measuring baseline are derived.

Frozen Field Hypothesis

Taylor’s frozen field hypothesis is based on the argument that when the streamwise

speed fluctuations are small relative to the mean velocity, i.e.

u 2
1 � U

2
, (5.55)

then the time rate of change at a fixed point can be approximated by

∂u

∂t
≈ −U ∂u

∂x1

. (5.56)

If this assumption holds, the space and time correlation coefficients are related by

R(r1 = Uτ) ≈ R(τ), (5.57)

and the streamwise one-dimensional spatial spectrum can be obtained from the

frequency spectral density of the observed time series, that is

F (k1 = ω/U) ≈ UF (ω). (5.58)

Criteria for Point Measurements

Fisher and Davies [21] suggested several mechanisms which can prevent the direct

interpretation of time spectra as space spectra by the frozen field hypothesis in

shear flows. First, different turbulent spectral components may appear to travel

at different speeds past a fixed point due to the mean shear. Second, the temporal

evolution of a turbulent eddy may change the apparent frequency of a particular

wavenumber component. Finally, fluctuations of the advection velocity may also

change the observed frequency as small eddies are carried within larger ones. We

will examine each of these mechanisms in more detail and establish criteria under

which the frozen field hypothesis can be applied to shear flows.
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Lin [39] showed that Taylor’s hypothesis can break down in a flow with nonuni-

form mean velocity, U(x3), because the fluctuations sensed at a point might be

caused by eddies somewhere else and therefore advected with a different mean ve-

locity. Under these circumstances, the frozen field hypothesis is expected to hold

only for eddies sufficiently small that the velocity difference across them caused by

the mean shear is small compared to the advection velocity, that is

∂U

∂x3

� k1U. (5.59)

Next, we require that an eddy be essentially frozen as it is carried past a

fixed point. Roughly, a turbulent eddy has characteristic length 1/k1 and velocity

[k1F (k1)]
1/2, so that a time scale is 1/[k 3

1 F (k1)]
1/2. We want this time to be short

compared to the time required to advect the eddy past the measuring point, 1/k1U ,

hence the criterion

k1F (k1) � U
2
. (5.60)

Finally, we consider the change of apparent frequency of a particular wavenum-

ber component due to fluctuations of advection velocity. These fluctuations are a

result of large eddies carrying smaller ones within them. In general, the spatial

spectrum is overestimated. This is because energy at slightly higher and lower

wavenumbers is aliased to k1, and the spectrum is concave upward. Therefore,

there is a net gain. Lumley [41] derived an approximate correction formula,

FT (k1) ≈ F11(k1) +
v 2
1

2U
2

(

k 2

1

∂2

∂k 2
1

F11(k1) − 2F11(k1)

)

, (5.61)

where FT (k1) is the measured spectrum obtained by applying Taylor’s hypothesis,

F11(k1) is the streamwise one-dimensional spectrum, and v1(x, t) is the streamwise

velocity associated with the energy containing eddies. Consider the spectrum

F11(k1) ∝ k−p
1 , (5.62)
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then (5.61) says that the fractional error,

FT (k1) − F11(k1)

F11(k1)
≈ v 2

1

2U
2
[p(p+ 1) − 2], (5.63)

increases with steeper spectral slope and does not vanish at high wavenumbers.

Assuming p = 5/3, as expected in a Kolmogorov inertial subrange, and v 2
1 /U

2
=

2%, a typical value in the boundary layer beneath ice, the overestimation of the

spectrum predicted by (5.63) is 2.4%.

Criteria for Line-Averaged Measurements

When the above criteria are satisfied, point measurements in a fixed location may

be used to infer the streamwise spatial structure of turbulent shear flows. If, instead

of point measurements, we make line-averaged velocity measurements along `, some

additional criteria must be imposed in order to ensure the applicability of Taylor’s

frozen field hypothesis.

First, in addition to (5.59) which requires that the velocity difference caused by

the mean shear across an eddy be small, we must also impose the condition that

the mean velocity difference across the instrument baseline be negligible, that is

∇U · ` � U. (5.64)

It is possible to quantify the error due to mean horizontal shear, and later we will

show that its effect can be neglected for typical values of shear observed during

the arctic experiment.

Next, we must modify criterion (5.60) which requires that an eddy be essentially

frozen as it is carried past the measuring point. The time required to advect an

eddy past the instrument baseline, 1/k1U sin θ, is a function of θ, the angle between

the mean velocity vector and the baseline. When θ is small, the advection time

is (` + 1/k1)/U . Therefore, eddies appear frozen as they are advected by the
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instrument if

k1F (k1) � U
2
sin2 θ for k1 ≥

1

`

(

1 − sin θ

sin θ

)

, (5.65)

and

k 3

1 F (k1)
(

`+
1

k1

)2

� U
2

for k1 <
1

`

(

1 − sin θ

sin θ

)

. (5.66)

Correction for Variable Advection Velocity

Finally, we consider how the fluctuations of advection velocity affect the measure-

ment of spatial spectra. Following Lumley [41], we assume that at high wavenum-

bers the spectrum may be described adequately by isotropic frozen regions advected

by a spatially uniform fluctuating velocity, v(x, t), that is

ui(x, t) =

∞
∫

−∞

exp[ik · (x − Ut− vt)] dZi(k), (5.67)

where dZi(k) is defined as before. The fluctuations of advection velocity, v(x, t),

may have the characteristics of the energy containing turbulent eddies as Lumley

assumed, or they may have other causes such as high frequency internal waves.

We also assume that v and dZ are statistically independent,

v dZ = v dZ, (5.68)

and that, over the range of k for which ϕij(k) is nonzero, one may approximate

the characteristic function of vt by its first two terms,

exp(−ik · vt) = 1 − t2

2
(k · v)2. (5.69)

We diverge from Lumley’s work in that we need to consider line-averaged velocity

fluctuations, ũθ(x, t) instead of point measurements. Using the above assumptions,
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and observing that

∞
∫

−∞

exp(−ik1Ut) (Ut)2F (k1) dk1 =

∞
∫

−∞

exp(−ik1Ut)
∂ 2

∂k 2
1

F (k1) dk1, (5.70)

one can find an expression for the line-averaged spatial spectrum obtained by

applying Taylor’s hypothesis, F̃T (k1), in terms of the spectral tensor ϕij(k), that

is

F̃T (k1) = F̃θ(k1) +
1

2U
2

∂ 2

∂k 2
1

∫

∞
∫

−∞

(k · v)2 ϕ̃θ(k) dk2 dk3, (5.71)

where

ϕ̃θ(k) =
sin2(k · `/2)

(k · `/2)2
ϕθ(k), (5.72)

and ϕθ(k), F̃θ(k1) are defined as in (5.18) and (5.27). If the fluctuations of the

advection field, v(x, t), are isotropic, then

(k · v)2 = k2v 2
1 , (5.73)

and (5.71) reduces to

F̃T (k1) = F̃θ(k1) +
v 2
1

2U
2

∂ 2

∂k 2
1

∫

∞
∫

−∞

k2ϕ̃θ(k) dk2 dk3. (5.74)

For a measuring baseline that is long compared to the size of the turbulent eddies

being measured, we can use (5.29) to obtain an analytic correction formula for the

error caused by fluctuations of the advection velocity,

F̃T (k1) − F̃θ(k1)

F̃θ(k1)
=

v 2
1 p

2

2U
2
sin2 θ

, (5.75)

for k1` sin θ � 4π.
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In his discussion of errors due to these factors on point measurements, Lumley

considers the effect of violation of three of the assumptions made in the model:

isotropy of the advection field, isotropy of the advected field, and lack of correlation

between the two. He concludes that relaxation of these assumptions does not

change the magnitude of the correction materially. Here, we consider the effect of

anisotropy of the advection and advected field on path-averaged measurements.

We can easily relax the assumption of isotropy of the advection field, in which

case (5.71) yields

F̃T (k1) − F̃θ(k1)

F̃θ(k1)
=

p

2U
2
sin2 θ

[(p− 1)(v 2
1 sin2 θ + v 2

2 cos2 θ) + v 2
3 ], (5.76)

for k1` sin θ � 4π. The above equation says that line-averaged spectra are influ-

enced by both vertical and horizontal velocity fluctuations of the advection field.

If the vertical velocity fluctuations are negligible, and the advection field is hori-

zontally isotropic,

v 2
1 ≈ v 2

2 � v 2
3 , (5.77)

then the correction formula reduces to

F̃T (k1) − F̃θ(k1)

F̃θ(k1)
=
v 2
1 p(p− 1)

2U
2
sin2 θ

, (5.78)

i.e. the line-averaged spectra are overestimated when the shape of the spectrum is

upward concave.

We can also relax the assumption of isotropy of the advected field. We find

that the correction equation (5.76) remains unchanged when the isotropic advected

field is replaced with one that is axially symmetric about the vertical axis.

Fig. 5.7 displays the correction required by the breakdown of Taylor’s frozen

field hypothesis due to fluctuations of the advection velocity, as a function of angle

between the measuring baseline and the mean flow. We have assumed a spectral

slope of p = 5/3. Traces for several values of v 2
1 /U

2
are displayed, both for an
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Figure 5.7: Correction of line-averaged spectra required by the breakdown of Tay-
lor’s frozen field hypothesis due to fluctuations of advection velocity along the
measuring baseline.

isotropic advection field and for v 2
3 = 0. For v 2

1 = v 2
2 = 0.10U

2
and v 2

3 = 0, the

spectral correction predicted by (5.76) is less than 6% when the mean velocity is

perpendicular to the measuring baseline. At small angles between the measuring

baseline and the mean flow, the correction required is significantly larger.

Correction for Horizontal Shear

A similar mathematical formulation can be used to correct measured spectra for

the effect of mean horizontal shear. Given mean velocity

U = U0 + σx2, (5.79)

we can model the flow field as

ui(x, t) =

∞
∫

−∞

exp[ik · x − ik1(U0 + σx2)t] dZi(k). (5.80)
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Assuming that

exp(−ik1σx2t) = 1 − t2

2
(k1σx2)

2 (5.81)

is a valid approximation over the range of k for which ϕij(k) is nonzero, the line-

averaged spatial spectrum obtained by applying Taylor’s hypothesis is

F̃T (k1) = F̃θ(k1) +
(σ` sin θ)2

2U0

2

∂ 2

∂k 2
1

∫

∞
∫

−∞

k 2

1B(k, `)ϕθ(k) dk2 dk3, (5.82)

where

B(k, `) =
sin2(k · `/2)

(k · `/2)2

(

1

4
− 2

(k · `)2

)

+
2 sin(k · `)

(k · `)3
. (5.83)

If the instrument baseline is long compared to the size of the turbulent eddies

being measured, B(k, `) simplifies to

B(k, `) =
sin2(k · `/2)

4(k · `/2)2
, (5.84)

and we obtain

F̃T (k1) = F̃θ(k1) +
(σ` sin θ)2

8U0

2

∂ 2

∂k 2
1

[k 2

1 F̃θ(k1)]. (5.85)

Consider the spectrum

F̃θ(k1) ∝
k−p

1

k1`
, (5.86)

then (5.85) results in the following correction formula,

F̃T (k1) − F̃θ(k1)

F̃θ(k1)
=

(σ` sin θ)2

8U0

2
p(p− 1). (5.87)

For example, for a pathlength ` = 200 m, mean horizontal shear σ = 10−4 s−1,

mean velocity U0 = 20 cm/s, and spectral slope p = 5/3, the correction required

is less than 0.2%.
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In conclusion, when certain conditions are satisfied, Taylor’s frozen field hy-

pothesis can be used to interpret the time spectra of line-averaged measurements

in terms of spatial correlations. When the measuring baseline is long compared to

the size of the eddies being sensed, the hypothesis fails for small angles between

the mean flow and the baseline. Correction formulas for both the effect of fluc-

tuating advection velocity and mean horizontal shear have been derived. Under

conditions typical of the arctic experiment, mean horizontal shear is unlikely to

cause a significant error.

5.2.5 Practical Limitations

So far, we have assumed that reciprocal acoustical transmission provides a contin-

uous time-series of true line-averaged velocity along a given baseline. Of course,

practical data sets can only approximate such requirements. In Section 4.3, we

investigated the sources of error for actual reciprocal travel time measurements

along 200 m horizontal paths in the ocean. In particular, we considered the ef-

fects of sampling, mean shear, multipath interference and mooring motion. Here

we discuss additional limits on measurement accuracy imposed by turbulent shear

and by scattering due to velocity and refractive index variability.

Due to diffraction effects, scales smaller than the first Fresnel zone cannot

be acoustically resolved at the receiver (Section 6.2.3). The first Fresnel zone

is the region where the pathlengths of scattered acoustic rays deviate from the

unscattered pathlength by half a wavelength or less. The size of this zone is

approximately (λa`)
1/2 at midpath, where λa is the acoustic wavelength and `

is the pathlength. The velocity measurements obtained using reciprocal travel

time difference approximate a line-average only for turbulent scales larger than

the dimensions of the first Fresnel zone. To probe smaller scales, the acoustic

frequency must be increased or the pathlength decreased.

In the presence of shear, the acoustic propagation paths of sound rays trav-

eling in opposite directions between two points do not overlap. The maximum
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separation between sound rays propagating in opposite directions is of the order of

σ`2/4c, where σ is the mean shear, ` the pathlength, and c the mean sound speed

(Appendix B). The error due to mean shear is negligible as long as the reciprocal

path separation is small compared to the scales of interest (which is the case for

the experimental parameters).

Turbulent shear increases at high wavenumbers roughly as [k3E(k)]1/2, where k

is the wavenumber and E(k), the three dimensional energy spectrum. Therefore,

turbulent shear can potentially interfere with velocity measurements by causing

the acoustic path in one direction to differ from the reciprocal path. Turbulent

shear causes some scatter of the acoustical energy and introduces some uncertainty

in the measurement of travel time, but this is a second order effect when compared

to the effect of velocity fluctuations parallel to the acoustic path.

Uncertainty in the measurement of travel time is also caused by refractive index

fluctuations due to temperature and salinity fine structure along the acoustic path.

Assuming that in the wavenumber range of interest, the sound speed field remains

essentially unchanged during the time required for reciprocal transmission, the

subtraction of travel times cancels out the effect of temperature and salinity fine

structure. To a good first order approximation, only velocity fluctuations along

the acoustic path are sensed by reciprocal travel time measurements. Therefore,

the simultaneous transmission of acoustic pulses in opposite directions between

two points can be used to separate the effects of velocity fine structure on acoustic

propagation from the effects of sound-speed structure.

5.3 Observations

5.3.1 Experimental Data

The motivation for the preceding theoretical discussion was a desire to interpret

horizontal velocity fluctuations observed with the path-averaging acoustical cur-

rent meter in the turbulent boundary layer beneath ice. During the experiment,
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transducers were deployed at the corners of a horizontal equilateral triangle of

side ` = 200 m. This configuration ensures that there is at least one acoustic

path within 30◦ of being perpendicular to the mean velocity vector for any given

direction of flow relative to the ice. Precise acoustic travel times in both direc-

tions between transducer pairs were recorded. The travel time difference of re-

ciprocal transmissions is interpreted as the line-averaged velocity along each sonic

path. Given a carrier frequency of fa = 132.3 kHz, the first Fresnel zone has

(λa`)
1/2 = 1.5 m diameter at midpath. In addition to the path-averaging current

meter, clusters of high resolution mechanical current meters were deployed roughly

at the center of the acoustic array by McPhee [46].

The underside surface of the ice is irregular and contains keels that extend down

to 10 m depth in the vicinity of the acoustic array. In addition, because of the

passage of internal waves and tides under the ice camp, steady current flow in one

direction is rarely achieved for periods long enough to obtain good statistical aver-

ages. The assumptions of homogeneity and stationarity are not well satisfied, and

some departure of observed properties from the theoretical predictions is expected.

5.3.2 Comparison with Point Measurements

Here, we present measurements made at the 20-m depth for a six hour period

on April 13, 1989, during which the mean current velocity relative to the ice was

15 cm/s in a northward direction. In Fig. 5.8, we compare spectra of line-averaged

and locally measured horizontal velocity fluctuations. The 95% confidence interval

is estimated by calculating the variance of the unaveraged spectral estimates under

the assumption of a normal distribution.

For this six-hour average, the point measurements of horizontal velocity exhibit

a -5/3 dependence on the wavenumber up to length scales of 75 m, and a line of

slope -5/3 has been fitted to the high wavenumber region of the point measure-

ments. Certainly, at those scales, we do not expect the conditions of local isotropy

to hold due to the proximity of the ice. Nevertheless, the existence of a -5/3 slope
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Figure 5.8: Comparison of energy spectra for point and line-averaged horizontal
velocity measurements obtained 20 m beneath floating ice in the arctic boundary
layer, on April 13, 1989. The point measurements were made by McPhee with
a high resolution mechanical current meter. Line-averaged velocity was obtained
using reciprocal acoustical travel time measurements along a 208 m horizontal
path. The spectra are a six hour average during which time there was a 15 cm/s
mean current flowing northward relative to the ice.

has often been observed outside the Kolmogorov inertial subrange, at scales where

local isotropy is not satisfied [49, 23].

The line-averaged data corresponds to a sonic path of length, ` = 208 m,

that forms angle θ = 76◦ with the mean flow. Clearly, the integrated spectrum

displays some attenuation relative to the point spectrum. Our goal is to determine

whether the theory derived in Section 5.2 adequately predicts the high wavenumber

attenuation of the integrated spectrum.

In the wavenumber range considered, the length scales vary from 20 to 50 m,

thus satisfying the condition k1` > 8π. Based on the spectra of Fig. 5.8, this

wavenumber range is associated with turbulent eddies that have characteristic

velocities of 0.5 cm/s, and time scales of the order of 2 hours. For mean ice-



98

Parameter Value
Pathlength ` (m) 208

Measurement angle θ (◦) 76
Spectral slope p 5/3

Anisotropy parameter a 0.25
Mean ice-relative velocity U (cm/s) 15

Streamwise fluctuations of advection velocity (v 2
1 )1/2 (cm/s) 5

Cross-stream fluctuations of advection velocity (v 2
2 )1/2 (cm/s) 3

Vertical fluctuations of advection velocity (v 2
3 )1/2 (cm/s) 1

Table 5.1: Parameters used to predict spectral attenuation.

relative velocity U = 15 cm/s, it only takes a few minutes to advect these eddies

past the measuring baseline. Therefore, the use of Taylor’s frozen field hypothesis

is justified.

Table 5.1, and equations (5.47) and (5.76) are used to predict the spectral

attenuation due to line-averaging. All the parameters listed in the table were

measured experimentally except for the anisotropy parameter a. The variance of

the spectral estimates for the six-hour period of Fig. 5.8 is too large to obtain a

meaningful estimate of a. However, the spectral transfer function (5.47) is fairly

insensitive to the anisotropy parameter, and by assuming an intermediate value,

a = 0.25, the maximum possible error due to this parameter does not exceed 10%.

The predicted integrated spectrum which has a slope of -8/3, is drawn on Fig. 5.8,

and falls well within the 95% confidence interval of the measured spectrum.

5.3.3 Angular Dependence of Spectral Transfer Ratio

Next we compare the predicted and the measured angular dependence of the spec-

tral transfer function. The triangular acoustical array provides three separate

measuring baselines separated by 120◦ on a horizontal plane. For the six-hour

period analysed in Section 5.3.2, the three acoustic paths form angles of 13◦, 46◦

and 76◦ with the mean ice-relative velocity vector. The integrated velocity spec-
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tra of the three measuring baselines have been calculated, and lines of slope -8/3

have been fitted to the high wavenumber region corresponding to turbulent eddy

scale sizes ranging from 20 to 50 m. The normalized proportionality constants

are displayed on Fig. 5.9 along with 95% confidence intervals. We use (5.46) to

predict the angular dependence of the integrated spectrum F̃θ(k1), and the nor-

malized prediction is drawn as a solid line on the figure. The broken line is the

angular dependence corrected for fluctuations of advection velocity and is obtained

using (5.76) and the rms velocity fluctuations listed in Table 5.1. The corrected

prediction differs significantly from the uncorrected one at small measuring angles

and provides a closer fit to the measured spectral level for θ = 13◦. We conclude

that for the six-hour interval considered, there is good agreement between exper-

imental measurements and theory, and that the Kolmogorov spectral properties,

appropriately corrected, are consistent with the observations at these scales in an

anisotropic regime.

5.3.4 Measurement of Dissipation Rate

The patchiness and intermittency of geophysical turbulence is an important con-

sideration when measuring energy dissipation rate. Oakey and Elliott [58] report

significant changes, often a factor of 10, in turbulence levels between two profiles

a few minutes apart. Yamazaki et al. [84] reported a factor of 2 difference be-

tween vertical and horizontal measurements of dissipation rates. These differences

emphasize the necessity of adequate space-time averaging to obtain good mean

values of ε. We suggest a new remote sensing technique, based on line-averaged

velocity measurements, for evaluating mean dissipation rate. Apart from the usual

advantage associated with remote sensing techniques in general, i.e. that they are

non-intrusive, the suggested method results in a dissipation rate averaged across

the area of water formed as the turbulent fluid is carried past the measuring base-

line by the mean flow. This two-dimensional average may help overcome some of

the sampling limitations of conventional profilers.
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Figure 5.9: Predicted and measured dependence of the integrated spectra, F̃θ(k1),
on the angle between the measuring baseline and the mean velocity vector, for the
same six hour period as Fig. 5.8.

It is clear from (5.12), (5.15) and (5.30) that integrated velocity spectra can

be used to infer dissipation rate when measurements are taken inside the inertial

subrange. The available line-averaged velocity measurements probe length scales

lying just outside the inertial subrange. This is due to instrumentation limita-

tions that could be overcome in a future experiment. Nevertheless, we can obtain

rough estimates of dissipation by assuming that the spectra of horizontal turbu-

lent velocity have a k
−5/3

1 range outside the inertial subrange with the correct value

for the Kolmogorov constant A of (5.15). Though not supported by theory, this

hypothesis may be justified first because we indeed observe a -5/3 slope outside

the inertial subrange (Section 5.3.2), and second because this situation has often

been reported during experimental work [23]. Here, we test this hypothesis against

dissipation data collected by Padman and Dillon [62] using velocity shear probes,

and by McPhee using turbulence clusters .
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The velocity shear probes were mounted on a rapid-sampling vertical profiler

which was operated from an ice hut located 250 m from the acoustic array. The

cycling time between profiles was usually 15-20 min. Two orthogonally mounted

airfoil shear sensors measured velocity shear microstructure uz = ∂u/∂z and vz =

∂v/∂z, with a spatial resolution of about 0.03 m. Estimates of the turbulent

kinetic energy dissipation rate ε were made for approximately 1.4 m depth intervals

by integrating the velocity shear spectra in the wave number range 2-20 cpm.

Assuming isotropy of velocity fluctuations in this wave number band,

ε =
15

2
ν

〈

u2
z + v2

z

2

〉

(5.88)

where ν is the kinematic viscosity of seawater, and angle brackets denote vertical

averaging.

Equation (5.15) and spectral measurements obtained with turbulence clusters

in the inertial subrange were used to estimate dissipation of turbulent kinetic

energy by M. G. McPhee (1993, personal communication).

The estimates of dissipation rate from the acoustic array are obtained in the

following way. The line-averaged horizontal velocity measurements are divided into

overlapping 40-min sections, and energy spectra are computed for each section.

The mean ice-relative velocity is used to convert the spectra from frequency to

wavenumber space. A line of slope -8/3 is fitted to the 20-50 m subrange of each

spectrum using a least squares algorithm. Equations (5.12), (5.15), (5.30), and

(5.76) are then used to obtain an estimate of ε.

On Fig. 5.10, estimates of dissipation rate obtained with the microstructure

profiler at the 20-m depth are compared to those obtained with the acoustical

current meter. An 11-day time series is presented. Each point on the figure

represents a 12-hour average. The mean ice-relative current speed at the 20-m

depth is also drawn for reference. The mean dissipation rate, as measured with

the microstructure profiler, is approximately 10−8 W/kg, except during days 102,
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Figure 5.10: (a) Comparison of estimates of dissipation rate from microstructure
profiler, turbulence clusters, and acoustical current meter at the 20-m depth. (b)
Ice-relative current speed at the 20-m depth.

103 and 104 when it averages 10−7 W/kg. This increase in the dissipation rate is

seen to correspond to an increased ice-relative current speed. Padman and Dillon

[62] have shown that during the experiment, the depth-integrated dissipation rate

is roughly proportional to the cube of the mean ice-relative current speed at 30 m

below the ice.

The estimates of dissipation rate obtained with the acoustic current meter ex-

hibit a larger scatter than those obtained with the microstructure profiler. We

speculate that this large scatter results from the acoustical estimates of ε being

based on a wavenumber range lying outside the inertial subrange, where the as-

sumption of a -5/3 slope with the correct Kolmogorov constant is not always valid.

Despite this limitation, the similarity of the two estimates of ε point to the pos-

sibility of using line-averaged velocity measurements as a remote sensing tool for
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measuring energy dissipation. Once instrumentation limitations are overcome, and

measurements are made inside the inertial subrange, it should be possible to obtain

accurate estimates of dissipation rate.

5.4 Summary and Conclusions

In this chapter we have shown that line-averaged velocity measurements over paths

of several hundred meters can be used to probe the statistical behaviour of tur-

bulent velocity fine structure in the ocean. Measuring baselines several times

longer than the scales of interest have been considered and analytic expressions

for the transfer function between true and line-averaged one-dimensional spectra

have been derived both for isotropic and for axially symmetric turbulence. The

measurements are most sensitive to velocity fluctuations when the mean velocity

vector is transverse to the measuring baseline; for this situation, the error incurred

by assuming isotropy instead of axial symmetry is unlikely to exceed 16%. A

dimensional argument has been used to show that for homogeneous turbulence

and long measuring baselines, the spectral attenuation due to line-averaging is in-

versely proportional to the non-dimensional wavenumber k1`. At sufficiently high

wavenumbers, line-averaged measurements provide a representative areal average

of the kinetic energy spectrum in the plane formed by the mean velocity vector

and the measuring baseline.

Criteria have been obtained for applying Taylor’s frozen field hypothesis to

long measuring baselines, and correction formulas have been derived for the effects

of variable advection velocity and mean horizontal shear. Neither of these two

phenomena are likely to cause errors exceeding 10%, as long as the mean veloc-

ity vector is within 30◦ of being perpendicular to the measuring baseline. Some

practical limitations of this measuring technique have been discussed and it is con-

cluded that the theory is only applicable to scales of the order of the first Fresnel

zone or larger. To probe smaller scales, the problem must be treated as a volume

average, which has not been done here; alternatively the acoustic frequency can
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be increased or the pathlength decreased.

The theory appears to fit observations of high-frequency horizontal velocity fluc-

tuations obtained during the arctic experiment. The predicted spectral attenuation

has been compared with the actual attenuation between point and line-averaged

measurements. The predicted dependence of this attenuation on the angle between

the mean ice-relative velocity and the measuring baseline has been compared to the

ratio of the velocity spectra for each of the three acoustic paths of the triangular

array. A new acoustic remote sensing technique for measuring turbulent energy

dissipation rate has been suggested, and estimates of dissipation obtained with the

acoustic array have been compared to measurements of dissipation obtained using

a shear microstructure profiler.

In conclusion, reciprocal acoustical transmission applied over hundreds of me-

ters is a promising remote sensing technique for obtaining line-averaged statistical

information about the velocity fine structure of a turbulent fluid. By simultane-

ously transmitting acoustic pulses in opposite directions between two points, one

can separate the effects of velocity fine structure on acoustic propagation from the

effects of sound speed structure; in conjunction with an analysis of forward scatter

acoustical scintillations, reciprocal travel time measurements can provide informa-

tion about both the velocity and the sound speed structure of the intervening fluid.

If the measurements are made inside a Kolmogorov inertial subrange, it is possible

to obtain an areal average of energy dissipation rate which is insensitive to local

inhomogeneities of the flow.
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Chapter 6

Amplitude Scintillation Analysis

6.1 Introduction

One of the objectives of the arctic experiment was to study the boundary layer be-

neath ice using acoustic scintillations. In Chapter 5, we introduced the concept of

reciprocal travel-time scintillation analysis for sensing velocity fine structure. Tra-

ditional scintillation analysis relies on the interpretation of amplitude and phase

(or time-of-arrival) fluctuations of forward scattered acoustic energy, to remotely

sense ocean flows. During the arctic experiment, the phase measurements were

contaminated by mooring motion (Section 4.4), and for this reason phase fluctua-

tions have not been analysed. Amplitude scintillations are less sensitive to mooring

motion, and their interpretation is discussed in this chapter.

The technique of acoustic scintillation has been adapted to the study of the

ocean by Clifford and Farmer [9], from previous experiments that utilized electro-

magnetic radiation to measure atmospheric, ionospheric and solar winds. When

an acoustic wave propagates through a turbulent fluid, perturbations of the wave

fronts by refractive index anomalies in the medium give rise to intensity fluctuations

on a receiving plane. This time-varying scintillation pattern contains information

about the intervening fluid. The structure and movement of this pattern may be

interpreted in terms of the structure and motion of the intervening water.

The advection of the scintillation pattern on a receiving plane can be used
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to infer fluid velocity transverse to the measuring baseline [19]. The variance of

acoustic intensity at the receiver can be related to the refractive index structure

parameter, which is a measure of the strength of refractive index fluctuations

caused by turbulent transport of temperature, salinity and momentum past the

measuring baseline [20]. By using several acoustic projectors and hydrophones,

it becomes possible to focus on specific locations across the acoustic path with a

resolution dependent on the complexity of the receiving and transmitting arrays

[11, 18].

Refractive index fluctuations in the oceanic boundary layer are primarily the

result of variations in the temperature, salinity and velocity of the fluid. The

refractive index structure parameter, C 2
µ (Section 6.2), is a measure of the strength

of the refractive index fluctuations. Typical values of , C 2
µ , in the arctic boundary

layer, are of order 10−11 m−2/3, compared to 10−9 m−2/3 reported by Farmer et

al. [20] in a tidal channel. Therefore, the measurement of acoustic scintillations in

the Arctic requires instrumentation that is two orders of magnitude more sensitive

than that used previously.

The signal-to-noise ratio for the measurements obtained in the Arctic is severely

limited by interference of ice-reflected acoustic energy with the direct path. This is

a limitation of the instrumentation that could be overcome in future experiments

as discussed on page 6.4. This problem is compounded by the fact that amplitude

scintillations focus on Fresnel sized disturbances, which are less energetic, and

therefore harder to measure, than the scales observed using reciprocal travel-time

scintillation analysis in Chapter 5. Nevertheless, the results obtained are encour-

aging; they demonstrate the applicability of amplitude scintillation analysis to the

study of arctic boundary layers.

The measurements reported here are unique in several ways. Previous oceanic

scintillation measurements were obtained in a tidal channel, while the ones de-

scribed here probe the boundary layer beneath ice in the Arctic. In turbulent tidal

channels, temperature and velocity microstructure play equally important roles as
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acoustic scatterers [20]. In the arctic boundary layer, the ice cover maintains water

temperature close to the freezing point, and temperature fine structure is negligi-

ble. Mixing is driven by buoyancy fluxes due to brine rejection during freezing,

and by surface stress due to ice-relative current speed. As a result, there is some

salinity fine structure, but it is velocity fluctuations that are primarily responsible

for forward acoustic scatter (Section 6.3.1). The significance of this is that ampli-

tude scintillation analysis in the arctic boundary layer results in direct estimates

of dissipation rate, provided the acoustic frequency and range are chosen so that

the first Fresnel zone is contained within the Kolmogorov inertial subrange.

In addition to one-way propagation data, reciprocal travel-time measurements

were obtained during the arctic experiment. As discussed in Chapter 5, reciprocal

travel-time scintillation analysis measures velocity variability, to the exclusion of

other refractive index perturbations. Therefore, the simultaneous measurement

of amplitude and reciprocal travel-time scintillations permits the separation of

velocity fine structure effects on acoustic propagation from those of sound speed

structure due to temperature and salinity fluctuations.

In this chapter, we first outline the theory that relates acoustic amplitude

fluctuations on a receiving plane, with refractive index perturbations in the flow, for

the weak scattering regime. After a brief description of the turbulent field and an

introduction to some functions commonly used to describe amplitude fluctuations,

we present a qualitative interpretation of amplitude scintillations. Some important

theoretical results are quoted. Next, some practical considerations are examined,

including important design parameters, and an estimate of refractive index variance

in the arctic boundary layer. Finally, we use amplitude scintillation analysis to

obtain an estimate of transverse velocity and to measure dissipation rate.

6.2 Theory

The theory of wave propagation through random media is well established for the

weak scattering regime [36, 73]. Here, we outline some of the important definitions



108

and results necessary for the interpretation of amplitude scintillation measurements

from the arctic experiment.

Statement of Problem

We consider transmitting and receiving transducers immersed in a turbulent flow,

and separated by distance ` from each other. The intervening random fluctuations

in acoustic refractive index produce a signal whose pressure amplitude P (x, t)

varies as a function of position and time. The forward problem consists in ob-

taining an expression that describes certain characteristics of P (x, t), given some

knowledge about the turbulent flow.

We begin this section with a statistical description of the turbulent flow. Then,

we introduce functions that describe pressure-amplitude fluctuations. Next, we

present a simple qualitative model describing amplitude fluctuations caused by

refractive index variability of the flow. Finally, we state the exact solution of the

problem and explore some numerical implications.

Notation

Wave propagation in random media has applications in several fields including

meteorology, astronomy and oceanography. Advances of the theory in one field are

often borrowed and applied in the others. This has lead to the coexistence of a

disconcerting variety of notations.

In choosing notation, we have strived for economy and consistency throughout

the dissertation. The random functions defined have zero mean; therefore, correla-

tion instead of covariance functions can be used as discussed in Section 2.1.1. The

wavenumber k = 2π/λ is associated with scales of turbulence, and ka = 2π/λa is

associated with the wavelength of the acoustic frequency.
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6.2.1 Description of the Turbulent Field

Sound Speed Fluctuations

Refractive index is the acoustically significant property of ocean flows; it describes

sound speed c as a function of position and time:

n(x, t) =
〈c〉

c(x, t)
, (6.1)

where the angle brackets denote ensemble averaging, and by definition 〈n〉 = 1.

The fractional sound speed fluctuation,

µ = n− 1 (6.2)

is a convenient parameter with zero mean, 〈µ〉 = 0, often used to study scattering

effects of turbulent flows.

Spectral Description

The parameter µ is a random function best described by its statistical properties.

The most useful ones are the variance, σ 2
µ = 〈µ2〉 = Rµ(0, 0), and the space-time

correlation function

Rµ(x, r, t, τ) = 〈µ(x, t)µ(x + r, t+ τ)〉. (6.3)

Assuming stationary and homogeneous turbulence, the Fourier transform pair,

Rµ(r) = 〈µ(x)µ(x + r)〉 =

∞
∫

−∞

exp(ik · r)ϕµ(k) dk, (6.4)

and

ϕµ(k) =
1

(2π)3

∞
∫

−∞

exp(−ik · r)Rµ(r) dr, (6.5)

is defined in a coordinate system moving with the mean flow velocity; ϕµ(k) is

the spectral density of the refractive index, and k is a wavevector associated with

scales of turbulence.
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Structure Function

When the refractive index fluctuations are not stationary or homogeneous, they

are more conveniently described by the structure function

Dµ(x, r, t, τ) = 〈[µ(x, t) − µ(x + r, t+ τ)]2〉. (6.6)

If µ(x, t) has stationary increments and is locally homogeneous, (6.6) simplifies to

Dµ(r, τ), a function of displacement and delay. For stationary and homogeneous

turbulence, the correlation and structure functions are trivially related by

Dµ(r, τ) = 2[Rµ(0, 0) − Rµ(r, τ)], (6.7)

and

Rµ(r, τ) =
1

2
[Dµ(∞,∞) −Dµ(r, τ)]. (6.8)

Isotropic Turbulence

Isotropy implies that only the magnitude of r is important; the correlation and

structure functions, (6.3) and (6.6), simplify to Rµ(r, τ) and Dµ(r, τ).

Kolmogorov Inertial Subrange

In Section 5.2.1, we introduced the Kolmogorov inertial subrange and its character-

istic k−5/3 energy spectrum. Temperature is usually the main source of sound speed

variability in the ocean. Depending on conditions, and time and length scales of in-

terest, temperature may behave as an advected, passive contaminant which closely

follows the turbulent velocity behaviour. Under these circumstances, a -5/3 law

is again predicted for the inertial subrange [47]. As a result, the refractive-index

structure function is [73]

Dµ(r) = C 2

µ r
2/3, (6.9)



111

and the spectral density of µ is

ϕµ(k) = 0.033C 2
µ k

−11/3, (6.10)

where C 2
µ is the structure parameter that characterizes the strength of refractive-

index fluctuations.

Measurements made at the ice camp indicate that velocity fluctuations are the

main source of refractive index variability in the boundary layer beneath ice (Sec-

tion 6.3.1). For velocity fluctuations, the Kolmogorov inertial subrange extends

through scales l◦ � λ < lt � L◦. The inner scale l◦ is a function of dissipation

rate ε, and kinematic viscosity ν [29]:

l◦ = 2π(ν3/ε)1/4. (6.11)

For seawater, ν ≈ 1.8 × 10−6 m2s−1, and we have measured ε ∼ 10−7 m2s−3,

therefore l◦ is about 2 cm.

Medwin [47] gives an empirical expression for the transition scale lt in the upper

ocean as a function of depth z in meters,

lt ∼ 0.7 exp(z/40), (6.12)

where lt is in m. For example, at a depth of 20 m (6.12) implies that lt ∼ 1.2 m.

Expression (6.12) is based on mid latitude measurements at depths below 100 m.

The arctic boundary layer is of course very different from the ice-free ocean, as

surface waves and buoyancy fluxes are greatly attenuated by the presence of the ice.

Therefore, (6.12) can only serve as a very rough estimate of the transition scale.

The outer scale L◦ represents the size of the largest turbulent eddies, usually of

order of the depth or width of the flow.



112

6.2.2 Acoustic Amplitude Fluctuations

Log-Amplitude

The pressure-amplitude fluctuations of scattered acoustic energy are usually ex-

pressed in terms of the log-amplitude random variable

χ = ln(P/〈P 〉), (6.13)

where P is the pressure-amplitude. Note that for χ� 1, which holds in the weak

scattering regime considered here, the log-amplitude is equal to the fractional

pressure fluctuations, χ ≈ P/〈P 〉 − 1, and has zero mean, 〈χ〉 ≈ 0. The weak

scattering regime is characterized by log-amplitude variance, σ 2
χ = 〈χ2〉, less than

about 0.3.

Spectral Description

To study the spatial and temporal variations of amplitude scintillation patterns,

we construct the log-amplitude correlation function,

Rχ(x, r, t, τ) = 〈χ(x, t)χ(x + r, t+ τ)〉. (6.14)

Practical measurements for one transmitter-receiver pair yield the time-lagged au-

tocorrelation of χ,

Rχ(τ) = χ(t)χ(t + τ) = 2

∞
∫

0

cos(2πfτ)Fχ(f) df, (6.15)

and the frequency spectrum

Fχ(f) = 2

∞
∫

0

cos(2πfτ)Rχ(τ) dτ, (6.16)

such that
∞
∫

0

Fχ(f) df =
1

2
Rχ(0) =

1

2
χ2; (6.17)
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the overbar denotes time-averaging, equivalent to ensemble averaging for an er-

godic variable, and easier to measure. Assuming Taylor’s frozen field hypothesis

is applicable, the time-lagged autocorrelation is related to the spatial correlation

function by (5.57), Rχ(r1 = Uτ) = Rχ(τ), where r1 is a displacement parallel to

the mean velocity vector U.

6.2.3 Qualitative Interpretation of Scintillation

In this section we present a qualitative description of pressure-amplitude fluctua-

tions for an acoustic wave propagating through a turbulent medium. Both refrac-

tion and diffraction effects are considered. Following Tatarskii [73], an expression

for the mean-square amplitude fluctuations, apart from a numerical coefficient, is

derived from these simple qualitative considerations.

Refraction Effects

Consider a plane wave incident on a weak collecting lens with focal length f◦ and

radius r◦. On a receiving plane, parallel to the acoustic wavefront, and a distance

x from the lens, the cross section of the beam is rx, where r◦/f◦ = rx/(f◦ −
x). If the pressure-amplitude is P◦ before the lens, Px at x, and there are no

transmission losses, then (P◦ r◦)
2 = (Px rx)

2. Therefore, the relative change in

pressure-amplitude is

δP

P◦

=
Px

P◦

− 1 =
r◦
rx

− 1 =
x

f◦ − x
. (6.18)

If x� f◦, then δP/P◦ ≈ x/f◦. Therefore, the largest focusing effect will be caused

by lenses with the smallest focal length.

The focal length of a lens,

f◦ = r◦/µ, (6.19)

depends on its radius of curvature r◦, and the fractional change of sound speed µ.

Refractive index inhomogeneities due to turbulence act as lenses; in the inertial



114

subrange, (6.6), (6.9) and (6.19) say that an inhomogeneity of size r is associated

with refractive index perturbation µ ≈ Cµr
1/3, and focal length f◦ ≈ r2/3/Cµ.

If l◦ is the inner scale of turbulence, then the smallest and most effective lenses

have r = l◦, and the acoustic ray is intercepted by approximately `/l◦ such lenses,

where ` is the pathlength. The parameter x varies for each lens, but is of order

`. Therefore, the mean square pressure-amplitude fluctuation at the receiver is

approximately

σ 2

χ ≈
〈(

δP

P◦

)2〉

∼
(

Cµ `

l
2/3
◦

)2
`

l◦
=
C 2

µ `
3

l
7/3
◦

. (6.20)

The description thus far is purely geometrical, i.e. it is valid for very short acoustic

wavelengths, λa � l 2
◦
/`.

Fresnel Zone

The first Fresnel zone is the region where the pathlengths of scattered acoustic rays

deviate from the unscattered pathlength by half a wavelength or less. The size of

this zone is approximately
√
λa` at midpath, where λa is the acoustic wavelength

and ` is the pathlength. Due to diffraction effects, inhomogeneities smaller than

the first Fresnel zone cannot be acoustically resolved at the receiver.

Diffraction Effects

Diffraction effects do not directly contribute to pressure-amplitude fluctuations at

the receiver because the diffraction pattern from a weak collecting lens is roughly

the same as that of a weak dispersing lens. However, when the size of the turbulent

lenses is small compared to the first Fresnel zone, the lenses lose their ability to

focus acoustic energy on the receiving plane, and have little effect on amplitude

fluctuations. The smallest refractive index inhomogeneities which retain the ability

to focus are roughly Fresnel sized, r ∼
√
λa`. Hence, the parameter l◦ in the
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geometrical approximation for σ 2
χ , (6.20), must be replaced with

√
λa`:

σ 2

χ ∼ C 2

µ k
7/6

a `11/6, (6.21)

where ka = 2π/λa. In other words, the effect of all small scale inhomogeneities

measuring less than
√
λa` is essentially removed because of diffraction effects.

6.2.4 Quantitative Description of Scintillation

Correlation Function

For spherical waves (i.e. small projector diameter relative to the Fresnel size
√
λa`),

in the weak scattering regime, the equation that relates the log-amplitude corre-

lation function, Rχ(r, τ), with the spectral density of the refractive index fluctua-

tions, ϕµ(k,x), is [36, 73]

Rχ(r, τ) = 2πk 2
a

`
∫

0

∞
∫

−∞

exp
[

iks ·
(

rs

`
− U(s)τ

)]

ϕµ(ks, s) sin2

(

k 2
s s(`− s)

2ka`

)

dks ds.

(6.22)

This is an integral, both along the acoustic path, 0 ≤ s ≤ `, and over the two-

dimensional wave number space, dks, where ks is a wavevector of the refractive

index fluctuations in a plane transverse to the acoustic path. The first two terms

of the integrand represent the contribution of a single Fourier component, ks, of

the refractive index field at path position s. These contributions are assumed

to be uncorrelated; they are integrated over all wavenumbers to obtain refractive

index screens, and all path positions to give the log-amplitude correlation function.

Implicit in the argument [rs/`−U(s)τ ] is the use of Taylor’s frozen field hypothesis.

The last term of the integrand measures the scattering efficiency of an irregularity

with wavenumber ks at position s; it accounts for the refraction and diffraction

effects discussed in Section 6.2.3. This filter function emphasizes Fresnel-zone-

sized disturbances. As a result, they are the ones that contribute most effectively

to log-amplitude fluctuations.
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If the significant scale sizes, ks ∼
√
λa`, lie in a range where the spectral density

of the refractive index fluctuations is isotropic, then ϕµ(k, s) = ϕµ(k, s), and (6.22)

can be simplified by integrating ks over angles:

Rχ(r, τ) = 4π2k 2

a

`
∫

0

∞
∫

0

J◦

(

k
∣

∣

∣

∣

rs

`
− U(s)τ

∣

∣

∣

∣

)

kϕµ(k, s) sin2

(

k2s(`− s)

2ka`

)

dk ds,

(6.23)

where J◦ is the zero-order Bessel function of the first kind.

Log-Amplitude Variance

If the Fresnel size lies within the inertial subrange, the spectral density of the re-

fractive index fluctuations is given by (6.10), and the variance of the log-amplitude

is easily obtained from (6.23):

σ 2

χ = Rχ(0, 0) = 0.124C 2

µ k
7/6

a `11/6. (6.24)

If the structure parameter C 2
µ is not known, but an estimate of the refractive

index variance σ 2
µ is available, Medwin [47] suggested another expression for the

log-amplitude variance,

σ 2

χ ∼
√
π

10
σ 2

µ k
2

a ` exp(z/40), (6.25)

where z is the depth of the acoustic propagation path in m. This semi-empirical

prediction is limited to the upper ocean (z < 100 m), and is based on data from

mid latitudes. Nevertheless, it may prove to be a useful first order approximation

when knowledge about a region is limited.
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Frequency Spectrum

Clifford [8] used (6.23) to derive a temporal spectrum of log-amplitude fluctuations

at a receiving point,

Fχ(f) = 8π2k 2
a

`
∫

0

∞
∫

2πf/U⊥

kϕ(k)[(kU⊥)2 − (2πf)2]−1/2

[

1 − cos

(

k2s(`− s)

ka`

)]

dk ds,

(6.26)

where U⊥ is the mean flow speed perpendicular to the acoustic path. This equation

is valid for spherical waves propagating through a weakly scattering medium, and

an acoustic path length much longer than the outer scale of turbulence, `� L◦. For

a Kolmogorov refractivity spectrum, (6.10), Clifford obtained an analytic solution

for (6.26),

Fχ(f) = 2.19
k 2/3

a `7/3C 2
µ

U⊥

(

f

fF

)−8/3

<






1 −H



1,
−5

6
,
3

2
,
−1

3
,
i

4

(

f

fF

)2




− 4

11
Γ
(−4

3

)

(

f

fF

)4/3

H





1

2
, 1,

17

6
, 1,

i

4

(

f

fF

)2










, (6.27)

where fF = U⊥(2πλa`)
−1/2 is the Fresnel normalization frequency, < indicates

the real component of the bracketed expression, Γ(−4/3) ≈ 3.05 is the gamma

function, and

H(a, b, c, d, z) =
∞
∑

n=0

Γ(a + n)Γ(b+ n)Γ(c)Γ(d)zn

Γ(a)Γ(b)Γ(c + n)Γ(d+ n)n!
(6.28)

is the confluent hypergeometric function. The series in (6.28) is easily and quickly

evaluated by noting that the first term of the summation is h◦ = 1, and that each

successive term can be obtained using the recursive formula

hn+1 = hn
(a+ n)(b + n)z

(c+ n)(d+ n)(n + 1)
. (6.29)
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However, the convergence of (6.28) is slow for f � fF , and the asymptotic form

given below should be used instead. The asymptotic forms for the log-amplitude

frequency spectrum are

Fχ(f) = 0.191
k 2/3

a `7/3C 2
µ

U⊥



1 + 0.119

(

f

fF

)4/3


 : f � fF , (6.30)

and

Fχ(f) = 2.19
k 2/3

a `7/3C 2
µ

U⊥

(

f

fF

)−8/3

: f � fF . (6.31)

6.3 Practical Considerations

6.3.1 Refractive Index Variability

As discussed in Section 6.1, the sub-ice boundary layer has unique acoustical scat-

tering properties. Refractive index variability in the upper ocean is often caused

by velocity fine structure advecting passive scalars. These scalar quantities in-

clude temperature, salinity, and, near the open ocean surface, air bubbles. The

component of velocity fine structure parallel to the acoustic propagation path is

also responsible for apparent changes of the sound speed and forward acoustic

scatter. Here, we estimate the variance of the fractional sound speed fluctuations,

σ 2
µ , based on measurements obtained by M. G. McPhee (1989, personal communi-

cation) during the arctic experiment:

mean ice-relative velocity U ∼ 0.1 m/s

velocity standard deviation σ 2
u = u 2

1 ∼ (0.01 m/s)2

mean temperature T ∼ −1.839 ◦C

temperature standard deviation σ 2
T = (T − T ) 2 ∼ (10−4 ◦C)2

mean salinity S ∼ 34.12 ◦/◦◦
salinity standard deviation σ 2

S = (S − S) 2 ∼ (10−3 ◦/◦◦)
2,

where the overbar denotes a 15 min averaging period. These data are typical of

conditions observed on April 18, at the 8-m depth. A simple empirical equation
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for sound velocity [5],

c = 1449.2 + 4.6T − 0.055T 2 + 0.00029T 3

+(1.34 − 0.010T )(S − 35) + 0.016 z (6.32)

where c is the sound speed in ms−1, T the temperature in ◦C, S the salinity in parts

per thousand (◦/◦◦), and z the depth in meters, is used to estimate the contributions

of temperature, salinity and velocity fine structure to the refractive index variance

of the medium:

σ 2

µ (T ) ≈
(

4.6 σT

〈c〉

)2

∼ 10−13, (6.33)

σ 2

µ (S) ≈
(

1.35 σS

〈c〉

)2

∼ 10−12, (6.34)

and

σ 2

µ (u) ≈
(

σu

〈c〉

)2

∼ 10−10. (6.35)

Based on these numbers, we expect velocity fine structure to be the main source of

forward scatter in the arctic boundary layer, a conclusion that is further supported

by the results reported in Section 6.5.2.

6.3.2 Design Requirements

An acoustic scintillation instrument designed to exploit the theory outlined in

Section 6.2 must satisfy several conditions; the most important requirements per-

tain to the choice of acoustic carrier and pathlength, the sampling rate, and the

detection threshold.

It was pointed out in Sections 6.2.3 and 6.2.4 that Fresnel-sized refractive in-

dex disturbances are responsible for most of the log-amplitude variance. Therefore,

through judicious choice of carrier frequency fa and range `, it is possible to em-

phasize the desired turbulence scales. During our arctic experiment, the choice
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of the parameters, fa = 132.3 kHz and ` = 200 m, was such that scales of order
√
λa` = 1.5 m were emphasized. The specific carrier frequency was chosen because

of transducer availability, as it is difficult to find an omnidirectional source at any

higher frequency. Based on (6.12), this value lies just outside the inertial subrange,

in the transition range, for the propagation depths of the experiment, d =8–20 m.

The second requirement is that of an adequate sampling rate to avoid aliasing.

The dominant amplitude fluctuations have an observed period that is a function

of their size and of the mean advection velocity transverse to the acoustic path,

τ =
√

λa`/U⊥. (6.36)

For typical ice-relative advection velocity, U⊥ = 0.1 ms−1, the dominant period of

the amplitude scintillations is τ = 15 s, and a sampling frequency greater than

2/τ = 0.13 Hz is necessary. The pulse repetition rate during our arctic experiment

was 1.1 Hz, thus satisfying this requirement.

The last design parameter discussed here is signal to noise ratio (SNR). A

rough estimate of the log-amplitude variance can be obtained from (6.25) and

(6.35). Given σ 2
χ ∼ 10−3, the required SNR is approximately

SNR > −10 log σ 2

χ ∼ 30 dB. (6.37)

Therefore, signal-to-noise ratio greater than 30 dB for a filtered sampling rate of

0.13 Hz is necessary to observe log-amplitude fluctuations in the arctic boundary

layer. The signal-to-noise ratio achieved during the arctic experiment (Section 4.2)

is barely adequate for the observation of amplitude scintillations. Nevertheless,

some useful results have been obtained (Sections 6.4 and 6.5).

6.4 Measurement of Transverse Velocity

Reciprocal transmission, as discussed in Chapter 5, provides the flow component

along the propagation path. The drift of the scintillation pattern on a receiv-
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ing plane contains information about the perpendicular flow component. Several

techniques for measuring crosswind from optical scintillations have been suggested

[30]; some of these, including delay to the peak and slope at zero time lag of the

cross-correlation function have been adapted to the study of ocean flows using

acoustic scintillation analysis [19]. During the arctic experiment, high-frequency

log-amplitude fluctuations were masked by noise due to limitations of the instru-

mentation. For this reason, only the peak delay method can be applied.

In Fig. 6.1 we compare time series of log-amplitude, χ(t), for two parallel

horizontal acoustic paths of length ` = 211 m, orientation 344◦ T and depth 8.4 m.

The two paths are separated by ρ = 56.3 cm, approximately one third of the Fresnel

size,
√
λa` = 1.5 m. During the time of the measurement, the mean flow relative

to the ice at the 8.4 m depth has speed 11 cm/s and direction 55◦ T; therefore,

the component of flow perpendicular to the acoustic paths is U⊥ = 10.4 cm/s.

Four minute time series of χ(t) obtained on April 18, 1989, for the upstream and

downstream acoustic paths are displayed in Figs 6.1a and b respectively. The time

series are noisy, and there appears to be little correlation between the two. Seg-

ments of the log-normalized sound intensity of 256 points length are Fourier trans-

formed and normalized by the Fresnel translation frequency fF = U⊥(2πλa`)
−1/2,

in order to determine the spectral properties of the time series. In Fig. 6.1c we

display a seven hour average of the acoustic log-amplitude power spectrum Fχ(f)

for the upstream acoustic path normalized by f/fF so as to allow direct compari-

son with Fig. 9 of Farmer et al. [20]. The dotted lines enclose the 95% confidence

interval of the spectrum. The dashed line is a constant fitted to the high frequency

noise floor. We attribute this noise to interference from the ice-reflected acoustic

signal. Though the measurements are an order of magnitude more sensitive than

those made by Farmer et al. in Cordova Channel, the peak at the Fresnel wave

number predicted by the propagation theory is barely above the noise level (Sec-

tion 6.5.2). This may be explained by the much weaker refractive index variability
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Figure 6.1: Comparison of log-amplitude time series for two adjacent horizontal
acoustic paths. (a) Normalized log-amplitude χ(t) of the upstream acoustic path,
length ` = 211 m, orientation 344◦ T and depth 8.4 m. (b) χ(t) for the ad-
jacent parallel acoustic path located ρ = 56.3 cm downstream of the first path.
(c) Normalized spectrum Fχ(f)f/fF of the upstream acoustic path. (d) Coherence
between the two paths. (e) Autocovariance of the two paths. (f) Cross-covariance
between the two paths.

in the ice-water boundary layer as discussed in Section 6.3.1.

In Fig. 6.1d, we plot the coherence function between the log-amplitude spectra

of the two adjacent acoustic paths. For f/fF > 6, the two time series are uncor-

related; at lower frequencies there is some coherence between the two time series.

This indicates that a certain percentage of the observed fluctuations are caused by

refractive index fine structure that remains coherent as it is advected past the two

acoustic paths. We lowpass filter the log-amplitude time series to remove what is

known to be measurement noise and plot the resulting time series and spectrum

as solid lines in Figs 6.1a, b and c respectively.

In Fig. 6.1e and f, we plot the normalized log-amplitude autocovariance and
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Figure 6.1: (Continued)
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cross-covariance of the filtered time series for the four minute segments displayed

in Fig. 6.1a and b. Because the high frequency end of the spectrum is missing, the

width of the autocovariance peak at zero lag has no physical significance; it depends

on the characteristics of the applied filter. For the same reason, the slope at zero lag

of the cross-covariance cannot be used to determine flow speed. However, there

is some similarity between the autocovariance function of the two paths, which

indicates that the refractive index fine structure remains somewhat coherent as it

is advected past the two parallel acoustic paths. Therefore, we may use delay to

the peak of the cross-covariance function, τp = −4.7 s, to estimate the horizontal

velocity component normal to the acoustic paths, U⊥ ≈ −ρ/τp = 12 cm/s.

Figure 6.2 shows time series of horizontal velocity determined using τp along

one side of the triangular array and velocity obtained using reciprocal transmis-

sion along the other two sides of the array. The amplitude scintillation velocity

estimates are based on 4, 20 and 40 min time series. The 4-min averages do not pro-

vide a good estimate of transverse velocity because the high-frequency end of the

spectrum is not available. However, estimates of velocity based on 20 and 40-min

averages seem to fit those obtained with reciprocal transmission reasonably well.

Despite the limitations of eddy decay, a flow-dependent weighting function, and the

difficulty in measuring small currents using the peak delay processing scheme, the

measurements shown here demonstrate the viability of the scintillation technique

for use in the ice-water boundary layer.

The signal to noise ratio was dominated by interference from the ice reflected

path. However, a modest change in data recording (i.e. continuously recording

both the direct and reflected arrivals, or including longer guard sequences as de-

tailed in Section 3.2.1) would have greatly improved results, allowing accurate

scintillation flow measurements based on the full spectrum.
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Figure 6.2: Time series of horizontal velocity determined using delay to the peak
of the cross-covariance function, τp, compared to velocity measurements obtained
using reciprocal transmission.

6.5 Measurement of Dissipation Rate

Much of the turbulent energy dissipation in the arctic boundary layer occurs very

close to the base of the ice, where accurate estimates of mean dissipation rate are

difficult to obtain. One of the problems is the patchiness and intermittency of

turbulence discussed in Section 5.3.4. A second problem is that point measure-

ments may not be representative of the average properties of the boundary layer

because of the presence of ice keels which change local dissipation rate. Finally,

shear microstructure profilers cannot measure ε adequately in the first 12 m be-

cause of instrument vibration following release [62]. Rising profilers can overcome

this limitation, but they are hard to operate through the ice.

Here, we use reciprocal travel time and amplitude scintillation analysis to ob-

tain two independent estimates of mean dissipation rate at the 8.4 m depth, i.e.
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approximately 6 m below the bottom of the ice cover. This value is then compared

to estimates of dissipation rate obtained with a shear microstructure profiler. For

the analysis, we have chosen the same data segment as that of Section 6.4. The

reason for this choice is that the mean ice-relative velocity is almost constant dur-

ing this 7-hour period. Given an overturning time scale of order 1 hour [62], this

should result in fairly good statistical averages.

6.5.1 Reciprocal Travel Time Scintillation

We begin by estimating mean dissipation rate, ε, using reciprocal travel-time scin-

tillation measurements and the method described in Section 5.3.4. Fig. 6.3 is

the spectrum of line-averaged horizontal velocity fluctuations for the 7-hour pe-

riod. The spatial spectrum displayed is obtained from the frequency spectrum

using Taylor’s frozen field hypothesis, (5.58). A line of slope -8/3 is fitted to

the wavenumber range corresponding to 3–7 m scales, because smaller scales are

masked by mooring motion (peak at k1/2π ∼ 0.8 m−1), and white noise due to

interference from the ice-reflected path. As we did in Section 5.3.4, we assume that

for horizontal velocity fluctuations the k
−8/3

1 range extends outside the isotropic

inertial subrange with the correct Kolmogorov constant. Equations (5.12), (5.15)

and (5.30) are used to obtain the mean dissipation rate, ε ≈ 2.7 × 10−7 W/kg.

6.5.2 Amplitude Scintillation

From the rough calculations of Section 6.3.1, we expect velocity fine structure

to be the main cause of forward acoustic scatter in the arctic boundary layer.

For this reason, amplitude scintillation measurements provide another estimate of

dissipation rate.
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Figure 6.3: Spectral density of line-averaged horizontal velocity, pathlength ` =
211 m, orientation 344◦ T and depth 8.4 m. The spectrum represents a 7-hour
average starting at 1155 UTC, 18 April 1989.

Scattering due to Velocity Fluctuations

The effective refractive index spectral density due to velocity fine structure is [73]

ϕµ(k) =
E(k) cos2(ϑ/2)

4πc2k2
, (6.38)

where E(k) = Aε2/3k−5/3 is the three-dimensional energy spectrum (5.15), ϑ is the

scattering angle, and c is the mean sound speed; the factor c2 converts velocity

fluctuations to sound speed fluctuations. From (6.38), it is clear that velocity

fluctuations do not contribute to backscatter (ϑ = 180◦), a direct consequence

of the incompressibility in the turbulent flow. For forward acoustic scatter, the

effective refractive index structure parameter is

C 2

µ =
2.41

c2
Aε2/3. (6.39)
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Figure 6.4: Frequency spectrum of log-amplitude fluctuations normalized by f/fF ,
where fF = U⊥(2πλa`)

−1/2 is the Fresnel translation frequency. The spectrum
corresponds to the same time period and acoustic path as Fig. 6.3. The theoretical
spectrum is obtained for an isotropic inertial subrange, and for dissipation rate
ε = 2.7 × 10−7 W/kg obtained in Section 6.5.1. The white noise added to the
theoretical spectrum is at a level consistent with that observed at high frequency.

This result is obtained by comparing (6.10) with (6.38).

Log-Amplitude Spectrum

Fig. 6.4 is the frequency spectrum of log-amplitude fluctuations for the same time

period and acoustic path as Fig. 6.3. The spectrum is normalized by f/fF , where

fF = U⊥(2πλa`)
−1/2 is the Fresnel translation frequency. Equations (6.27) and

(6.39), with ε = 2.7 × 10−7 W/kg, are used to predict the shape of the spectrum

under the assumption of an isotropic inertial subrange. White noise is added to

this theoretical spectrum, at a level consistent with the noise floor observed at high

frequency. The measured and predicted spectra agree in the vicinity of the Fresnel
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maximum, f/fF =
√

2π. For lower frequencies, the assumption of an isotropic in-

ertial subrange does not hold, and we do not expect the measured and the predicted

spectra to correspond. The correspondence between the measured and predicted

spectral levels in the vicinity of the Fresnel maximum leads us to three important

conclusions. First, as expected, velocity fine structure is the principal cause of for-

ward acoustic scatter in the arctic boundary layer during our measurements; the

contribution from temperature and salinity fluctuations is negligible. Second, the

assumption of an isotropic inertial subrange appears to be reasonable at least up

to the Fresnel size
√
λa` = 1.5 m at the 8-m depth. Finally, we have obtained two

independent estimates of mean dissipation rate that agree well with each other,

using reciprocal travel-time and amplitude scintillation analysis.

6.5.3 Shear Microstructure Profiler

It is interesting to compare the value of mean dissipation rate obtained using

scintillation analysis, with the profiles obtained by Padman and Dillon [62] using a

shear microstructure probe. Dissipation rates as a function of depth are displayed

on Fig. 6.5. The shear microstructure profiler measurements are only reliable below

about 12 m because of instrument vibration following release. The dissipation rate

measured with the scintillation apparatus at the 8.4-m depth is roughly one order

of magnitude greater than dissipation rates obtained with the shear profiler. This

indicates that much of the energy dissipation occurs very close to the base of the

ice, in the region that is not resolved by the profiling instrument. To determine

the contribution to the depth-integrated dissipation rate,

ε̃ =

D
∫

0

ε(z) dz, (6.40)

from the unresolved surface layer, 0 m < z < 12 m, Padman and Dillon [62]

assumed that the dissipation rate was exponentially decaying,

ε(z) = α exp(−βz), (6.41)
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Figure 6.5: Dissipation rate as a function of depth from scintillation analysis (cir-
cles), and from shear microstructure profiles (asterisks). The data points are 7-hour
averages starting at 11:55 UTC, 18 April 1989. The microstructure profiler data
is also averaged over 2-m depth bins The dashed line is an exponential fit to the
profiler estimates of ε, and the solid line is an estimate of ε(z) based on scintillation
analysis and the assumption of a logarithmic surface layer extending out to 35 m
depth.

consistent with the decay scale found in the resolved portion of the profile, 12 m <

z < D, where D is the mixed layer depth. The dashed line on Fig. 6.5 is an

exponential fit to the profiler dissipation data. The solid line is an estimate of

dissipation rate obtained from scintillation measurements and by assuming a con-

stant stress surface layer as discussed in Section 2.2.2. Using turbulence clusters

deployed at the center of the scintillation array, M. G. McPhee (1993, personal

communication) also measured shear production [46] and energy dissipation rates

that were consistently higher than those reported by Padman and Dillon [61]. The

high dissipation rates measured by McPhee and by the scintillation apparatus may

be the result of enhanced local turbulence due to pronounced bottom topographic
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features (Fig. 2.4).

6.5.4 Discussion

The estimated energy dissipation rate, ε = 2.7 × 10−7 W/kg, obtained in Sec-

tions 6.5.1 and 6.5.2, was the result of measurements made at the 8.4 m depth.

This is sufficiently close to the bottom of the ice, z ≈ 6 m, so that useful es-

timates of turbulent stress near the surface, τ◦ = 0.08 ntm−2, drag coefficient,

CD(6 m) = 0.006, and roughness length, z◦ = 0.05 m, can be made using surface

layer approximations, (2.35), (2.36) and (2.38), introduced in Section 2.2.2. These

values are consistent with previous measurements under multiyear pack ice [45],

0.002 < CD(6 m) < 0.01 and 0.002 m < z◦ < 0.1 m.

Under steady state conditions, the atmospheric stress exerted on the ice is

balanced by the momentum flux entering the water (oceanic drag on the ice),

a term due to planetary rotation (normal to the velocity of the ice), and the

gradient of internal ice stress [45]. For a first order analysis, we neglect internal

ice stress and the Coriolis term, and assume that the magnitude of atmospheric

stress is roughly equal to the magnitude of oceanic stress near the ice. During

the dissipation measurements, a steady northerly wind, Ua(2.82 m) = 7 ms−1,

was recorded [27]. For the measured atmospheric conditions of −17◦C, 1.03 bar

and 72% relative humidity, the density of air above the ice is 1.4 kgm−3 [77].

We use the surface layer approximations of Section 2.2.2 to estimate the drag

coefficient, Ca(10 m) = 9.5 × 10−4, and roughness length, za = 2.3 × 10−5 m,

associated with momentum transfer between the atmosphere and the ice. These

estimates are at the lower end of values previously measured over pack ice [6],

8.3 × 10−4 < Ca(10 m) < 2.3 × 10−3 and 10−5 m < za < 2.4 × 10−3 m, and the

surface drag coefficient is lower than typical values (∼ 1.3 × 10−3) observed over

open ocean. This may be an indication of significant internal stress gradient in

the ice. Padman et al. [63] point out that diurnal tidal currents in the vicinity
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of the Yermak Plateau are enhanced by plateau topography. These tidal currents

cause stress divergence at the base of the ice which greatly exceeds the typical

divergence of the surface wind stress. Therefore, the tides may be responsible

for the anomalously deep mixing layers observed under the ice camp, and for

introducing internal stress gradients causing local deformations of the ice.

The kinetic energy flux from the ice to the ocean is proportional to ρu 3
∗
, where

ρ is seawater density and u∗ is friction velocity as defined in Section 2.2.2. Padman

and Dillon [62] estimated the proportionality constant by assuming that all kinetic

energy input at the surface is dissipated locally, and that buoyancy effects are

negligible. They used the approximation discussed in Section 6.5.3 to estimate the

depth-integrated dissipation rate, ε̃, and found that

ε̃ ≈ 2.4 ρu 3

∗
. (6.42)

This may be compared to proportionality constants of 4 and 6 obtained from open

ocean studies by Oakey and Elliott [58] and Dewey and Moum [14], respectively.

The lower value in the Arctic may in part result from the unique mechanism of

momentum transfer between the ice and the mixed layer, and from the absence of

surface waves or direct interaction between the atmosphere and the ocean. Based

on data comparison in Section 6.5.3, Fig. 6.5, we suggest that another possible

cause for the low proportionality constant may be that energy dissipation rate is

underestimated by profiler data because the measurements are not representative

of true areal average, or because the unresolved near-surface dissipation rates are

much higher than approximation (6.41) made in [62].

6.6 Summary and Conclusions

Though a limitation of our signal-recording scheme restricts the accuracy of the

scintillation measurements, the present results demonstrate the usefulness of am-

plitude scintillation analysis for the study of the arctic boundary layer. We find

that velocity fine-structure is the principal cause of forward acoustic scatter at
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the 8-m depth. This permits a direct estimation of energy dissipation rate from

amplitude scintillation measurements. By combining reciprocal travel-time and

amplitude scintillation analysis, we obtain both the along-path and the transverse

component of the mean flow velocity. Minor modifications to the instrumentation

would provide the full spectrum, and appropriate analysis would allow excellent

scintillation flow measurements.
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Chapter 7

Surface Waves

7.1 Introduction

In Chapters 5 and 6 we discussed the measurement of velocity and refractive index

fine structure; the scales considered were small compared to the dimensions of the

acoustic array, λ � `. The incoherence of flow disturbances along the measur-

ing baseline translates into a spectral attenuation proportional to 1/k1` at high

wavenumbers instead of the 1/(k1`)
2 expected for coherent events; phase informa-

tion is lost, but it remains possible to infer the spectral properties of sound speed

and velocity fine structure. In Chapters 7 and 8, we discuss flow disturbances with

scales relatively large compared to the dimensions of the acoustic array, λ � `,

and which remain coherent along the measuring baseline. We exploit the spatial

filtering properties of the array (Section 4.5.2) to detect surface and internal waves

that have amplitudes well below the resolution of conventional current meters. In

this chapter, we present concurrent measurements of ice tilt and path-averaged

horizontal velocity fluctuations due to surface gravity waves.

7.2 Background

Swell from the open ocean propagates into the Arctic as flexural-gravity waves

[76]. Scattering at the ice edge damps high frequency swell. In addition, leads,

irregularities in the ice and plastic creep dissipate swell energy within the pack ice,
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attenuating short wavelengths more strongly than long ones. For these reasons,

the ice acts as a lowpass filter whose cutoff frequency decreases with increasing

distance from the open ocean, allowing only low frequencies to reach the central

pack ice.

During the arctic experiment, horizontal velocity fluctuations caused by swell

were very weak (∼ 10−4 ms−1) because of the distance (∼ 200 km) separating

the ice camp from the open ocean. This signal is masked by turbulent velocity

fluctuations, and well below the resolution of conventional current meters. Swell

this far away from the ice edge can be observed with tiltmeters, strainmeters

and accelerometers deployed on the ice, but it has never before been reported on

current meter records. Typical surface wave periods measured at the ice camp

range from 20 to 50 s and correspond to wavelengths of 600 to 4000 m. At these

wavelengths, the ice cover exerts little influence on the propagation of the waves,

and the dispersion relation of surface gravity waves is applicable [65], namely

ω2 = gk tanh kh, (7.1)

where ω = 2πf is the radial frequency, k = 2π/λ is the wavenumber, g = 9.8 ms−2

is the acceleration due to gravity, and h is the ocean depth. For typical depths

measured during the experiment (Fig. 2.5), 2h > λ and (7.1) simplifies to

ω2 = gk. (7.2)

7.3 Ice Tilt

During the experiment, swell caused tilt fluctuations of order of a few µrad at

periods ranging from 20 to 50 s [13]. Typical spectra are plotted on Fig. 7.1. The

north-south tilt fluctuations at frequencies associated with flexural-gravity waves

are more energetic than the east-west fluctuations; this is an indication of the origin

and propagation direction of the waves, i.e. most of the wave energy originates

from the open ocean, roughly a few hundred kilometers south of the ice camp.
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Figure 7.1: North-south and east-west spectra of tilt fluctuations from a five-hour
record starting at 1300 UTC, 10 April 1989.

Czipott and Podney [13] determined the range of headings of swell impinging on

the tiltmeter by cross spectral analysis of the two orthogonal axes. They found

that short period swell (∼ 20 s) comes predominantly from the eastern Fram Strait

(∼ 195◦ T), where it passes through less ice (Fig. 2.1); long period swell (∼ 50 s)

comes mainly from the western Fram Strait (∼ 220◦ T), as it can travel longer

distances with less attenuation. Finally, it must be pointed out that the analog

lowpass filters used prior to digitization of the tilt data introduce a frequency-

dependent phase shift, and that there is a calibration uncertainty which translates

in a 2–4 factor error margin for tilt-amplitude at the frequencies considered here;

this complicates comparison of tilt measurements with other data.
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Figure 7.2: Line-averaged horizontal velocity spectra for each of the three mea-
suring baselines of the acoustic array at the 20-m depth from a five-hour record
starting at 1300 UTC, 10 April 1989.

7.4 Horizontal Velocity

Spectra of line-averaged horizontal velocity, for each of the three acoustic paths at

the 20-m depth, are displayed on Fig. 7.2 for the same time period as that of Fig.

7.1. The spectra are five-hour averages starting at 1300 UTC, 10 April 1989 (day

100). During this period the mean ice-relative current speed at the 20-m depth is

6 cm/s in a southward direction, and the turbulence intensity is low (Fig. 5.10).

The low level of turbulence maximizes the possibility of detecting swell with the

acoustical current meter. The following comments can be made about the spectra

of Fig. 7.2.

• The energetic spikes labeled 3 and 4 at half-Nyquist (0.29 Hz) and Nyquist

(0.57 Hz) are caused by a periodic clock synchronization problem of the

sonars. This problem is associated with the asynchronous resetting of each
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sonar between transmissions (Section 3.1), and can be disregarded for the

present analysis.

• The noise floor at high-frequency is caused by interference of the reflected

path with the direct path. During the period considered here, the 101◦ T

sonic path (the one under smooth ice) happens to be the quietest of the three

paths; a possible explanation for this is presented in Section 7.6.

• Spectral peaks bearing label 2 and centered at 0.08 Hz result from relative

motion of the moorings during each reciprocal transmission. The peaks are

located at lower frequency than that of Fig. 4.3 because of the deeper de-

ployment depth (20 vs 8 m), and are four times less energetic because of

decreased turbulence intensity.

• Turbulence is responsible for spectral energy detected below 20 mHz, as

discussed in Chapter 5.

• An unaccounted-for spectral peak marked by 1, which is above the 95%

confidence level, is observed at 0.03 Hz in the 223◦ T spectrum (solid line).

We attribute the observed 33 mHz spectral peak to low frequency surface gravity

waves of period ≈ 30 s, and use the tilt measurements to support this assertion in

Section 7.5.

7.5 Comparison of Tilt and Horizontal Velocity

For a deep ocean and thin ice, relative to the wavelength of the flexural-gravity

waves, i.e. when the ice and the bottom are not “seen” by the waves, dispersion

relation (7.2) is applicable. For the case of a surface wave with elevation

η(x, t) = η◦ cos(k · x − ωt), (7.3)

the horizontal velocity component parallel to the wavevector for deep water is [65]

uh(x, t) = ωη◦ exp(−kz) cos(k · x − ωt), (7.4)
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at depth z below the surface. Near the surface, (7.4) simplifies to

uh = ωη. (7.5)

Ice tilt τ is then related to surface displacement and horizontal velocity by

tan τ = ∇h η =
1

ω
∇h uh, (7.6)

where ∇h is the horizontal gradient operator. For small surface displacements

relative to the wavelength, (7.6) yields

τ◦ = kη◦ =
k

ω
u◦, (7.7)

where τ◦, η◦, and u◦ are the amplitudes of ice tilt, surface displacement, and

horizontal velocity, respectively. Equations (4.8), (4.12) and (7.7) relate tilt and

the path-averaged horizontal velocity fluctuations, ũθ, due to surface waves and

measured by the acoustical current meter near the surface:

|ũθ|
τ◦

=
ω

k

sin(k · `/2)

k`/2
, (7.8)

where ` is the averaging baseline.

Tilt measurements establish that long period swell is roughly aligned with the

223◦ T acoustic path (Section 7.3). Equation (7.8) says that this path should

therefore be the most sensitive to the passage of surface waves. The 223◦ T line-

averaged horizontal velocity spectrum is redrawn on Fig. 7.3 along with a prediction

based on (7.8) and the tilt measurements. Both the measured and the predicted

spectra of line-averaged horizontal velocity exhibit a peak at 33 mHz. There is

some discrepancy in the spectral levels, but that may be caused by additive noise

and by the uncertainty in the calibration of the tilt measurements (Section 7.3).
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Figure 7.3: Line-averaged horizontal velocity spectrum for measuring baseline
223◦ T at the 20-m depth from a five hour record starting at 1300 UTC, 10 April
1989. A prediction of horizontal velocity caused by surface gravity waves based on
tilt measurements is also drawn.

7.6 Mooring Motion

Based on the observed propagation direction of surface waves, and the low level of

turbulence, one can conjecture why the noise level of the 101◦ T path in Fig. 7.2

is 2.5 times less than that of the other two paths. As discussed in Section 4.3,

uncertainty in the measured acoustic travel time is principally caused by interfer-

ence from the ice-reflected path and by relative mooring motion. The spectra of

Fig. 7.2 suggest that the northern mooring common to acoustic paths 223◦ T and

344◦ T moves substantially more than the other two moorings. Due to the small

ice-relative current speed and the low turbulence level during the period consid-

ered here, we speculate that surface waves are the main driving force responsible

for the motion of the northern mooring, which is a 3-m long horizontal bar sus-

pended 20 m below the ice transverse to the propagation direction of the waves.
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The other two moorings are oblique to the wave vector and hence less sensitive

to the passage of the waves. The preceding discussion suggests that mooring mo-

tion measured acoustically may be used as an exceptionally sensitive detector of

velocity at frequencies neighboring mechanical resonance. Furthermore, mooring

design and deployment parameters can be chosen to emphasize a desired direction

and scale.

7.7 Summary and Conclusions

The detection of horizontal velocity associated with surface waves is an example

of the sensitivity and spatial filtering property of the acoustical current meter we

deployed in the Arctic. The velocity disturbance caused by the waves is of order

10−4 ms−1 and cannot be detected by point current measurements both because

the disturbance is well below the resolution of conventional current meters, and

because it is masked by turbulent velocity fluctuations. For mean advection veloc-

ity of 6 cm/s, 2 m sized turbulent eddies with characteristic velocity of 10−3 ms−1

are responsible for 33 mHz horizontal velocity fluctuations. The acoustical cur-

rent meter attenuates these turbulent scales by more than an order of magnitude

(Section 5.2.3). By comparison, the surface waves detected at the ice camp have

wavelengths that are long relative to the averaging pathlengths; hence, they are

not substantially attenuated. This is but one example of how the spatial filtering

characteristic of the acoustical current meter may be used to detect phenomena

that cannot be observed with the traditional approach; local flow disturbances are

attenuated and the array focuses on events with scales that are large compared to

its dimensions. We have shown that within the limits of experimental accuracy,

the assumptions of thin ice, deep ocean and linear surface gravity wave theory are

justified. Most importantly, we have obtained a measurement independent of ice

tilt that confirms the presence of surface waves at the ice camp.
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Chapter 8

Internal Waves

8.1 Introduction

In Chapter 7, we discussed the detection of surface waves using measurements of

path-averaged horizontal velocity and ice tilt. Internal gravity waves are another

source of flow disturbance with scales large compared to the dimensions of the

acoustical current meter. Once again, we exploit the spatial filtering properties

of the acoustical array, and the sensitivity of the tilt measurements, to observe

internal waves with amplitudes smaller than the resolution of conventional current

meters. The passage of an energetic wave packet is reported. Simultaneous ob-

servations at two depths are used to measure attenuation of internal wave kinetic

energy as the ice is approached.

8.2 Low-Amplitude Wave Train

Because it attenuates turbulent velocity fluctuations, the acoustic current meter

is particularly sensitive to the passage of internal waves which have wavelengths

greater than 450 m (Section 4.5.2). Fig. 8.1a shows the signature of a very low

amplitude internal wave train on horizontal current in the mixed layer at the 20.4 m

depth. This coherent wave train was also detected by P. V. Czipott (1989, personal

communication) using ice tilt measurements (Fig. 8.1b).

To relate tilt to horizontal velocity near the surface, we use the equation of
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Figure 8.1: Low amplitude wave train. (a) Current speed relative to the ice at
the 20.4 m depth. The time series is filtered with 0.0083 Hz lowpass and 1 cph
highpass filters. (b) East-west ice tilt. The tiltmeter and the acoustic array were
separated by some 337 m.

motion for non-viscous and incompressible fluid

dU

dt
=
∂U

∂t
+ U · ∇U =

−1

ρ
∇P + g, (8.1)

where ∇ is the gradient operator, P the pressure, ρ the density, and g the ac-

celeration due to gravity. The vertical component of (8.1) is simplified using the

hydrostatic approximation,

dU3

dt
=

−1

ρ

∂P

∂x3

− g = 0, (8.2)

and integrated with boundary condition P = 0 at the surface to obtain

P = ρg(η − x3), (8.3)
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where η is the surface elevation. The horizontal component of (8.1) can be written

dUh

dt
=

−1

ρ
∇h P = −g∇h η. (8.4)

where Uh is the horizontal velocity near the surface, and ∇h is the horizontal gra-

dient operator. For internal waves at wavelengths much greater than the thickness

of the ice, the ice is a flaccid membrane that responds to wave forcing as a free

surface. Ice tilt τ is then proportional to horizontal acceleration of seawater near

the surface,

tan τ = ∇h η =
−1

g

dUh

dt
. (8.5)

Equation (8.5) shows that tilt of the ice reflects horizontal acceleration at the

surface and that neither a steady flow, nor a spatially uniform flow forces tilt of

the ice cover. For small surface displacement, and neglecting the Doppler shift

caused by ice camp drift and the nonlinear terms, (8.5) simplifies to

τ◦ = kη◦ =
ω

g
u◦, (8.6)

where τ◦, η◦, and u◦ are the amplitudes of ice tilt, surface displacement, and

horizontal velocity, respectively. The wave train of Fig. 8.1 has 28-min period and

3.5-mm/s root-mean-square (rms) horizontal velocity. Using (8.6), the expected

tilt is 1.35 µrad rms as measured. The less than perfect coherence and the phase

delay between tilt and acoustic current measurements is due in part to the 337 m

separation between the tiltmeter and the acoustic array.

This low amplitude wave train was not detected by thermistor chains at the

thermocline, or by other current meters at the ice camp. The detection of such

an event using the path-averaging current meter and ice tiltmeters demonstrates

the sensitivity of these two instruments to small internal waves. However, it must

be pointed out that the current measurements have the advantage of seeing lower

frequency flow fluctuations than the tiltmeters, and that ice tilt can be caused by
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other things (and people), including thermal effects. Also, the current measure-

ments do not suffer the uncertainty due to Doppler shift and the nonlinear terms

in (8.5) as discussed in Section 8.3.2.

8.3 Energetic Wave Packet

As the camp drifted near the 2000-m isobath along the northern slope of the

Yermak Plateau (Fig. 2.2), from 13 April to 20 April 1989, strong internal bores

passed diurnally. Internal wave packets, with two to three oscillations at periods

from 20 to 40 min, rode the crest of the bores. In this section, we report on the

passage of one of these packets. Over the limited aperture (∼ 1 km) of measurement

arrays at the camp, the packet described herein passed at constant speed without

change of form. It resembled a solitary wave coming from tidal flow over the

Yermak Plateau [60].

8.3.1 Observations

The internal wave packet was observed passing the ice camp at 82.53◦ N, 8.58◦

E between 00 and 02 hours universal time coordinates (UTC) on 18 April 1989

(day 108) [12]. The wave forced a peak-to-peak ice tilt of 36 µrad in a north-south

direction (Fig. 8.2a), in phase with the vertical component of seawater velocity in

the pycnocline extending from about 100 to 200 m (Fig. 8.3) in water 1800 m deep.

The vertical velocity in the packet had a maximum excursion of 15 cm/s at a depth

near 125 m (Fig. 8.2b). Water temperature also revealed vertical displacement

in a signal 90◦ out of phase with tilt and vertical velocity (Fig. 8.2c). Numerical

integration of vertical velocity in the pycnocline shows that its maximum excursion

was about 36 m during the passage of the packet (Fig. 8.2d). The internal undular

bore resulted in a pycnocline displacement of about 15 m. Integrated velocity

compares closely with pycnocline displacement determined from the temperature

record of Fig. 8.2c. We used a mean gradient of −31 m/◦C in the thermocline to
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Figure 8.2: Signals during passage of a packet of internal waves between 00 and 02
hours UTC on 18 April 1989 (day 108) [12]. (a) Ice tilt measured in a north-south
(solid line) and in an east-west direction (dashed line). The packet produced a
maximum excursion of 36 µrad in north-south tilt and 7 µrad in east-west tilt. (b)
Vertical velocity measured at depths of 100, 125, 150, 175, and 200 m, as marked on
the right ordinate. The maximum excursion of vertical velocity in the packet was
15 cm/s at 125 m. (c) Water temperature at a depth of 99.5 m. Before the arrival
of the packet, the thermometer was in a nearly isothermal mixed layer and was
insensitive to vertical displacement of water. The mixed layer shoaled as the packet
arrived. The thermometer, then in a thermocline, responded to displacements of
the water column.
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Figure 8.2: (Continued) (d) Pycnocline displacement determined by numerical
integration over time of vertical velocity in the pycnocline, starting at 125-, 150-,
and 175-m depths. It shows a peak excursion of 36 m during passage of the packet.
(e) Longitudinal strain measured along a north-south axis on the surface of the
ice. It shows an excursion of 3 × 10−7 coming from the packet.

convert temperature to a measure of displacement also indicating a peak excursion

of 36 m. Strain of the ice, measured along a north-south direction, showed an

excursion of 3 × 10−7 during the passage of the wave packet (Fig. 8.2e).

Tiltmeter and temperature arrays showed that the packet propagated in a

direction within 20◦ of true north at a speed of 0.45 ms−1; its wavelength was

632 m and its period was 24 min. The comparatively small east-west tilt shows that

wave crests were orthogonal to the propagation vector. The wave form preserved

its shape as it propagated through the instrument arrays.
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Figure 8.3: Vertical profile of temperature, salinity, density, and dissipation rate
measured from the ice camp on 17 April 1989, 23:59 UTC, just before the passage
of the internal wave packet [61].
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Figure 8.4: Horizontal seawater velocity near the surface during the internal wave
packet. The 344◦ T horizontal current, measured at the 8-m depth by the path-
averaging acoustic current meter (solid line), shows a maximum excursion of
12 cm/s during the packet. Horizontal current at the surface, inferred from ice
tilt using (8.6) (dashed line), shows a maximum excursion of 8 cm/s during the
packet. A 10-min delay was observed between ice tilt and horizontal velocity mea-
surements; it results from the separation of the tiltmeter and acoustic array and
has been removed in the figure.

8.3.2 Horizontal Velocity

As discussed in Section 8.2, the dimensions of the acoustic array are ideally suited

for detecting horizontal velocity caused by the passage of internal waves. Scales

smaller than 450 m are attenuated due to path-averaging, and a very “clean”

record of the passage of the wave packet (λ = 632 m) is obtained. Compare for

example the point and line-averaged horizontal velocity measurements of Fig. 4.5

during the passage of the internal wave packet.

In Fig. 8.4, we compare the measured horizontal seawater velocity near the sur-

face with that inferred from ice tilt measurements during the internal wave packet.

The 344◦ T horizontal current, which is roughly aligned with the propagation di-

rection of the packet, measured at the 8-m depth by the path-averaging current

meter is drawn as a solid line; it shows a maximum excursion of 12 cm/s during

the packet. Horizontal current at the surface, inferred from ice tilt of Fig. 8.2a and

(8.6) is drawn as a dashed line; it shows a maximum excursion of 8 cm/s during the
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packet. The tilt measurements lagged the current measurements by approximately

10 min as a result of the separation between the tiltmeter and acoustic array.

Considering the good agreement between tilt and horizontal velocity for the

low amplitude wave train of April 9 (Fig. 8.1), we were puzzled by the amplitude

discrepancy observed during the April 18 event (Fig. 8.4). We expected the hori-

zontal velocity measurements to be attenuated by the proximity of the ice (5.6 m

on average), and the presence of deep ice keels (Fig. 2.4). Contrary to our expec-

tations, the measured velocity excursion during the passage of the packet is 50%

higher than that inferred from ice tilt.

At first, we thought that the amplitude discrepancy might result from the pres-

sure differential δP supported by ice flexure at the ice-water interface. However,

a first order approximation shows that δP is negligible compared to hydrostatic

pressure from surface displacement. For a thin ice cover of thickness h and density

ρi floating on water of density ρ, the expression [76]

δP =

[

E(hk)4

12(1 − ν2)ρgh
−
(

ω2

gk

)(

ρi

ρ

)

kh

]

ρgη (8.7)

gives the pressure differential for an oscillation with frequency ω, wavenumber k,

and surface displacement η. Young’s modulus of elasticity, E, and Poisson’s ratio,

ν, are 9.2 × 109 Pa and 0.365, respectively for sea ice [17]. For ice h = 2.4 m

thick, the pressure differential δP caused by ice flexure during the passage of the

wave packet is only 1.2% of the hydrostatic pressure ρgη that results from surface

displacement. Therefore, differential pressure is negligible compared to hydrostatic

pressure, and the ice cover is a flaccid membrane that effectively responds to wave

forcing as a free surface.

Another attempt to reconcile ice tilt and horizontal current near the surface

is based on Doppler-frequency shift caused by relative motion of the measuring

platform (the ice camp) and the underlying seawater (Section 4.5.4). Consider

an internal wave with radial frequency ω = 2πf , wave vector k, and wavenumber
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k = 2π/λ, propagating with phase speed C = ω/k in seawater. The apparent

phase speed measured from the ice floe is

Cd = C + k · U/k = ωd/k, (8.8)

where U is the mean ice-relative velocity of seawater, and

ωd = ω + k · U (8.9)

is the Doppler-shifted frequency. Surface tilt caused by the passage of internal

waves is proportional to ω, but does not depend on U. Using ωd instead of ω

to infer horizontal velocity from tilt results in a fractional error k · U/kC. The

phase speed of the energetic wave packet measured from the drifting ice platform

is Cd = 45 cm/s, and the ice-relative seawater velocity parallel to the wave vec-

tor is k · U/k = 7.5 cm/s. Therefore, neglecting the Doppler shift accounts for

roughly half the discrepancy between the measured and inferred horizontal veloc-

ity of Fig. 8.4.

In the first-order analysis presented here, we have also neglected the nonlinear

terms of (8.5). Roughly, the magnitude of these terms, k|uh|2, is approximately

27% that of the linear term, ω|uh|. For this reason, we attribute the remaining

discrepancy between the measured and inferred horizontal velocity to the nonlinear

terms.

8.3.3 Vorticity

M. D. Levine (1989, personal communication) suggested that the passage of inter-

nal waves under the ice camp may have a measurable relative vorticity signature

due to conservation of potential vorticity as the mixed layer depth contracts and

expands. Provided that there is no input of vorticity, such as might come from

frictional effects within the ice, we have

d

dt

(

ζ + f

D

)

= 0, (8.10)
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Figure 8.5: Vorticity at the 8.4-m depth forced by the passage of an energetic
internal wave packet under the ice camp. (a) Horizontal velocity, 344◦ T. (b)
Relative vorticity.

where ζ is the relative vorticity, f the planetary vorticity, and D the depth of the

mixed layer.

We test this hypothesis during the passage of the energetic wave packet that

propagated under the ice camp between 00 and 02 UTC on April 18, 1989. The

waves in the packet had phase velocity 45 cm/s, wavelength 632 m and period

24 min (Section 8.3.1). The size of the acoustic array (approximately one third

of the wavelength), was ideally suited to detect vorticity at these scales. The

undisturbed depth of the mixed layer before the passage of the packet was 100 m

(Fig. 8.3), and the packet caused a maximum excursion of 36 m in the pycnocline

(Fig. 8.2d). Based on (8.10), and assuming negligible relative vorticity before the

passage of the wave, we expect a vorticity excursion of order 0.3 f .

In Fig. 8.5 we plot the horizontal velocity parallel to the propagation direction
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and the relative vorticity at 8.4 m depth during the passage of the wave packet. The

measured vorticity is much greater than what can be accounted for by conservation

of potential vorticity. In addition, the frequency of the vorticity signal is double

that of the internal waves, i.e. the interaction of the waves and the ice is nonlinear.

We conclude that interaction between the boundary layer and the ice is a more

important source of relative vorticity than changes in the depth of the mixed layer.

R. W. Stewart (1993, personal communication) suggested that lift due to flow

around ice keels may be a significant source of local ice strain. Consider for example

circulation (3.17) Γ ≈ 5 m2s−1, and mean ice-relative velocity U ≈ 0.1 ms−1, typical

of conditions measured during the experiment. The lift force per unit length normal

to the flow direction on an ice keel is of order [33]

L = ρΓU ≈ 500 ntm−1, (8.11)

where ρ is seawater density. Fig. 2.4 indicates that the acoustic array encloses a

pressure ridge keel with characteristic depth of order 5 m. Therefore, the lift force

exerted on that keel is of order 2500 nt. Compare the magnitude of this force to

the drag due to turbulent momentum flux on the region spanned by the acoustic

array, τ◦AT ≈ 1500 nt, where τ◦ ≈ 0.08 ntm−2 is a typical value for the oceanic

stress exerted on the ice (Section 6.5.4), and AT = 18327 m2 is the area enclosed

by the array. We conclude that the lift force may indeed be significant in causing

localized ice strain (Fig. 8.2e). However, due to the random distribution and shape

of ice keels, we expect the lift force to be negligible when averaged over a large

enough area, as opposed to drag which is proportional to the size of the area under

consideration.

8.4 Comparison Between Two Depths

Because of its sensitivity, the acoustic current meter is well suited to the study of

boundary layer effects on internal wave velocity structure, and of coupling between
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internal waves and turbulence in terms of dissipation of internal wave energy.

Neglecting the effects of ice friction and planetary rotation, the expected horizontal

velocity of internal waves in the mixed layer,

uh(z) = uh(0) cosh(khz), (8.12)

is a function of depth z and horizontal wavenumber kh [67]. For example, given

a 600 m wavelength, we expect 1.64% attenuation of horizontal velocity at 10 m

depth compared to 20 m depth. Any additional attenuation may indicate dissipa-

tion of internal wave energy due to frictional effects.

In Fig. 8.6, we compare internal wave velocities measured by the acoustic cur-

rent meter at depths of 10.4 and 20.4 m. For periods greater than 20 min, there is

zero lag and good coherence between the measurements at the two depths as shown

on Figs 8.7a and 8.7b respectively. This is consistent with the notion that velocity

fluctuations with periods greater than 20 min are principally caused by internal

waves which are coherent throughout the boundary layer, while fluctuations with

periods shorter than 20 min result mostly from turbulent eddies which have limited

vertical extent. The horizontal velocity energy spectra (Fig. 8.8) indicate possible

attenuation of internal wave energy and intensification of turbulent kinetic energy

as the ice is approached.

In Fig. 8.6d we compare relative vorticity measured at two depths. There

is very little coherence between the two time-series even at periods associated

with internal waves. As for velocity spectra (Fig. 8.8), the spectra of vorticity

(Fig. 8.9) indicate low frequency attenuation and high frequency intensification

as the ice is approached. We found little coherence between horizontal velocity

and relative vorticity measurements; therefore, we discount the possibility that

the similar behavior of the spectra results from common measurement errors.
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Figure 8.6: Velocity and vorticity measurements at the 10.4 and 20.4-m depths.
(a) Horizontal velocity, 101◦ T. (b) Horizontal velocity, 223◦ T. (c) Horizontal
velocity, 344◦ T. (d) Relative vorticity.
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Figure 8.7: Cross-spectrum of the 10.4- and 20.4-m depth horizontal velocity for
the 344◦ T acoustic path. (a) Phase. (b) Coherence.
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Figure 8.8: Spectra of 344◦ T horizontal velocity at the 10.4- and 20.4-m depth.

8.5 Summary and Conclusions

In this chapter, we have discussed the detection and study of internal waves using

the path-averaged horizontal velocity signal and the relative vorticity measure-

ments made with the acoustic array in the mixed layer beneath ice. The dimen-

sions and spatial filtering properties of the acoustic current meter make it ideally

suited for detecting high-frequency, low-amplitude internal waves which are oth-

erwise masked by turbulent velocity fluctuations and local inhomogeneities of the

flow. Conventional current meter measurements of water velocity near the surface

often cannot detect the small velocities forced by internal waves, because flow over

the rough bottom of the ice leads to turbulence. The low-amplitude wave train

event of April 9 was not detected by acoustic Doppler nor by mechanical current

meters deployed at the ice camp, or by temperature-sensor arrays. The only other

instruments deployed at the ice camp with comparable sensitivity to the passage
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Figure 8.9: Spectra of relative vorticity at the 10.4 and 20.4-m depths for the
time-series of Fig. 8.6d

of low-amplitude internal waves were the tiltmeters; the ice acts as a spatial filter

to suppress small-scale turbulence and enables tiltmeters to measure vertical sur-

face currents from internal waves. But the tiltmeters have serious limitations—i.e.

inability to see low frequency fluctuations and bias caused by ice drift. For the

April 9 event, we have shown that ice tilt and horizontal velocity measurements

near the surface are in good agreement with a first-order analysis that neglects

Doppler shift and nonlinear terms in (8.5).

We have also discussed the passage of a wave packet on April 18, that is more

than two orders of magnitude more energetic than the event of April 9. For the

April 18 event, we find that the first order analysis is not adequate for relating

horizontal velocity near the surface with ice tilt. The horizontal velocity at the

surface determined by numerical integration over time of surface tilt, is approxi-

mately in phase with horizontal velocity measured directly by the acoustic array
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at a depth of 8 m, but is two-thirds of its amplitude (Fig. 8.4). We attribute the

discrepancy to the Doppler shift introduced by a steady ice camp drift of 7.5 cm/s

and to nonlinear terms in (8.5), which we have neglected in the first-order anal-

ysis presented here. Each of these factors accounts for an error of roughly 15%

in the tilt measurement. This analysis points out some of the limitations of tilt

measurements for detecting internal waves. First, ice drift relative to seawater

can introduce an error which is proportional to the ratio of ice-relative seawater

velocity and the internal-wave phase speed. Second, for energetic internal waves,

nonlinear effects may attenuate surface displacements and ice tilt measurements

will underestimate the kinetic energy of the waves.



Chapter 9

Summary and Concluding

Remarks

We have measured horizontal currents in the ice-water boundary layer using two

path-averaging acoustical methods: scintillation drift and reciprocal transmission.

The two methods provide orthogonal components of velocity for each set of acous-

tic paths. A limitation of our signal recording scheme restricts the accuracy of

the scintillation measurements; the length of the guard sequences used was limited

by real-time decoding requirements, and either the direct or the reflected path ar-

rivals were recorded for each transmission because of limited recording bandwidth.

However, the present measurements demonstrate that the use of the full signal and

appropriate analysis would allow excellent scintillation flow measurements.

Reciprocal transmission measurements are contaminated by relative motion

of the acoustic elements during each reciprocal transmission for frequencies in

the neighborhood of the mooring’s mechanical resonance. At frequencies away

from this resonance, the noise floor results from interference of the ice-reflected

acoustic path with line-of-sight propagation which, as pointed out above, could

have been overcome with full signal recording or the use of longer guard sequences

for decoding. Nevertheless, the rms noise level for the actual horizontal velocity

measurements using reciprocal transmission is less than 0.1 mm/s averaged over

1 min.

The unprecedented sensitivity of the acoustical current meter allows the detec-

160
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tion of events that cannot be detected by other current meters deployed at the ice

camp. For example, we were able to detect horizontal velocity caused by flexural

gravity waves originating in the open ocean which is several hundred kilometers

away from the ice camp.

Comparison of path-averaged velocity with point measurements shows marked

differences which we attribute to local anomalies of the flow field caused by the

rough ice topography. The acoustic system provides integral measurements which

average over several turbulent eddies; therefore, the measured horizontal velocity

is particularly sensitive to the passage of low amplitude internal waves under the

ice camp. A comparison of horizontal velocity at two depths in the boundary layer

shows good coherence at internal wave frequencies and some attenuation as the ice

is approached.

Relative vorticity averaged over the span of the acoustic array was measured

to an accuracy of 0.01 f for a filtered sampling rate of 1 min. Vorticity at internal

wave length scales is dominated by horizontal shear caused by interaction with ice

topography and not by planetary vorticity as we initially expected.

In theory, scintillation drift around the triangular array can be used to obtain

horizontal divergence. We were unable to obtain meaningful measurements of

horizontal divergence during the experiment because of insufficient signal to noise

ratio. As previously explained, this was due to a processing and recording design

limitation rather than any inherent limitation of the scintillation approach.

The sensitivity of the instrument also allows detection of kinetic energy at

frequencies associated with the advection and evolution of turbulent velocity fine

structure. We have shown that line-averaged velocity measurements over paths of

several hundred meters can be used to probe the statistical behaviour of turbulent

velocity fine structure. Measuring baselines several times longer than the scales

of interest have been considered and analytic expressions for the transfer function

between true and line-averaged one-dimensional spectra have been derived both

for isotropic and for axially symmetric turbulence. The measurements are most
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sensitive to velocity fluctuations when the mean velocity vector is transverse to

the measuring baseline; for this situation, the error incurred by assuming isotropy

instead of axial symmetry is unlikely to exceed 16%. A dimensional argument

has been used to show that for homogeneous turbulence and long measuring base-

lines, the spectral attenuation due to line-averaging is inversely proportional to the

non-dimensional wavenumber k1`. At sufficiently high wavenumbers, line-averaged

measurements provide a representative areal average of the kinetic energy spectrum

in the plane formed by the mean velocity vector and the measuring baseline.

Criteria have been obtained for applying Taylor’s frozen field hypothesis to

long measuring baselines, and correction formulas have been derived for the effects

of variable advection velocity and mean horizontal shear. Neither of these two

phenomena are likely to cause errors exceeding 10%, as long as the mean velocity

vector is within 30◦ of being perpendicular to the measuring baseline. Some practi-

cal limitations of this measuring technique have been discussed and it is concluded

that the theory is only applicable to scales of the order of the first Fresnel zone or

larger. To probe smaller scales, the problem must be treated as a volume average,

which has not been done in this paper; alternatively the acoustic frequency can be

increased or the pathlength decreased.

The theory appears to fit observations of high-frequency horizontal velocity

fluctuations obtained in the boundary layer beneath ice during the arctic exper-

iment. The predicted spectral attenuation has been compared with the actual

attenuation between point and line-averaged measurements. The predicted depen-

dence of this attenuation on the angle between the mean flow and the measuring

baseline has been compared to the ratio of the velocity spectra for each of the three

acoustic paths of the triangular array.

We conclude that reciprocal acoustical transmission applied over hundreds of

meters is a promising remote sensing technique for obtaining line-averaged statis-

tical information about the velocity fine structure of a turbulent fluid. By simulta-

neously transmitting acoustic pulses in opposite directions between two points, one



163

can separate the effects of velocity fine structure on acoustic propagation from the

effects of sound speed structure; in conjunction with an analysis of forward scatter

acoustical scintillations, reciprocal travel time measurements provide information

about both the velocity and the sound speed structure of the intervening fluid. For

measurements inside a Kolmogorov inertial subrange, it is possible to obtain an

areal average of energy dissipation rate which is insensitive to local inhomogeneities

of the flow.

9.1 Recommendations for Future Studies

In concluding, a number of suggestions for future studies and applications of the

measurement techniques discussed in this thesis come to mind. The accuracy

of the present set of measurements was constrained by the instrumentation and

not by any inherent physical limitations such as ambient noise, non-reciprocity of

acoustic paths due to shear, high-frequency vibrations of the moorings, scattering

and diffraction effects, or the advection and evolution of turbulent fine structure

during reciprocal transmission. It would be desirable to obtain measurements that

make the full spectrum available for analysis.

Improving the sensitivity of the measurements might require some refinements

in the theory in order to account for effects that were negligible in the analysis of

the arctic data set. For example, one might consider volume averaging caused by

diffraction effects for scales smaller than the first Fresnel zone, or the nonreciprocity

at small scales due to turbulent shear. Corrections for the advection and evolution

of turbulent fine structure during a reciprocal transmission, and for nonreciprocity

of the sonic paths due to mean shear may be derived.

The measurement of energy dissipation rate is of practical importance to many

oceanographic studies. Amplitude and reciprocal travel-time scintillation analysis

could be carried out in a turbulent tidal channel where temperature and velocity

fine structure are equally important in producing forward scatter. It would be inter-

esting to compare the relative importance of the two scattering processes through
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several tidal cycles and to interpret the observations in terms of the oceanography

of the channel.

Measuring energy dissipation rate in the open ocean close to the surface using

reciprocal travel time scintillation analysis would present special difficulties due to

the presence of bubbles and their strong scattering cross section. Nevertheless, pro-

vided reciprocal transmission is established, multipaths are resolved, and the data

is corrected for mooring motion, sensitive path-averaged velocity measurements

should be possible.

Reciprocal travel time measurements could also replace moorings that measure

turbulence due to the breaking of internal waves hundreds of meters below the

surface. The mixing events are intermittent (log-normal distributed) both in space

and time, and long averaging periods are required. Path-averaged measurements

sample a larger volume of water than point measurements during any given time

period, and thus provide better spectral estimates of turbulence. The acoustic

measurements also have the advantage of being a remote sensing technique which

does not disturb the flow that is measured.

There is some interest in the measurement of potential vorticity at internal

wave length scales, and the measurement of relative vorticity and horizontal diver-

gence have been attempted using triangular arrays of current meter. The sampling

errors inherent in these discrete measurements could be eliminated by replacing

the current meters with pairs of transducers that measure scintillation drift and

reciprocal travel time, hence resolving normal and along-path integrated velocities.

These integrated velocities can then be used to estimate horizontal divergence and

relative vorticity.
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Appendix A

Correlation Peak Interpolation

In this appendix, two methods for interpolating the location t◦ and amplitude A

of correlation peaks are presented. In the first method, a theoretical expression for

the shape of the peak is derived and a nonlinear curve fitting algorithm is applied.

The second method is less accurate but also easier to implement; a linear least

squares algorithm is used to fit the data to a quadratic.

For the first method, equations 3.6, 3.7 and 3.8 are used to obtain an expres-

sion for the shape of the peak. Since convolution in the time domain becomes

multiplication in the frequency domain, equation 3.6 can be written

Rxy(f) = H(f)Rx(f), (A.1)

where R(f) and H(f) are the Fourier transforms of R(τ) and h(τ) respectively.

The transform of equation 3.8 is

Rx(f) =
A sin2(πfτp)

τp(πf)2
. (A.2)

Equations 3.7, A.1 and A.2 yield the cross-correlation as a function of frequency:

Rxy(f) =

{

Rx(f) if −τ−1
p ≤ f ≤ τ−1

p

0 otherwise
. (A.3)

The definition of the inverse Fourier transform,

Rxy(τ) =
∫

∞

−∞

Rxy(f) exp(i2πfτ) df, (A.4)
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n an

0 0.9028233336
1 −2.0000000000
2 1.8599120891
3 −0.9877523383
4 0.3428553005
5 −0.0841722149
6 0.0154094590
7 −0.0021857624
8 0.0002473421
9 −0.0000228505

Table A.1: Coefficients of the polynomial which describes the shape of the corre-
lation peak.

standard integral tables, and trigonometric identities are used to solve for Rxy(τ)

explicitly:

Rxy(τ) =
A

π

∞
∑

n=0

(−1)n (2π)2n+1

(2n+ 1)2 (2n)!





(

τ

τp
+ 1

)2n+2

+

(

τ

τp
− 1

)2n+2

− 2

(

τ

τp

)2n+2


 .

(A.5)

The binomial theorem is applied to convert this expression into a polynomial in

even powers of τ/τp,

Rxy(τ) = A
∞
∑

n=0

an

(

τ

τp

)2n

, (A.6)

with coefficients

an =
2

π

∞
∑

m=n

(−1)m (2π)2m+1 (2m+ 2)

(2m+ 1) (2n)! (2m+ 2 − 2n)!
. (A.7)

Table A.1 gives numerical values for the first ten coefficients. The series in equation

A.6 converges rapidly for τ/τp ≤ 1, because successive terms have alternating signs;

the maximum error, when n terms are used, is bounded by A|an|(τ/τp)2n.
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Given data points Yi corresponding to times ti, the maximum likelihood esti-

mate of t◦ and A is obtained by minimizing the merit function

χ2 =
N
∑

i=1

[Yi −Rxy(ti, t◦, A)]2 , (A.8)

where the correlation delay τ = ti − t◦. This χ2 function is minimized using

the Broyden-Fletcher-Goldfarb-Shanno algorithm to implement the variable metric

method [66].

A second method for interpolating peak location and amplitude is to assume

that the peak has a quadratic shape near the maximum and to fit the five recorded

data points using linear least squares. For convenience, equation 3.10 is expressed

in terms of a nondimensional time variable u,

Rxy(u) = a+ bu+ cu2, (A.9)

where u = (t − t3)/τs, t3 corresponds to the central data point, τs = τp/4 is the

sampling period, and ui = i− 3. The amplitude of the quadratic peak,

Aq =
c− b2

4a
, (A.10)

and its location

t◦ = t3 −
b

2a
τs, (A.11)

can be expressed in terms of the coefficients of equation A.9. The merit function

that must be minimized is

χ2 =
5
∑

i=1

[

Yi − (a + bui + cu 2

i )
]2

. (A.12)
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The solution is obtained by use of the normal equations [66]:







a
b
c






= (ATA)−1AT

















Y1

Y2

Y3

Y4

Y5

















, A =

















1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

















, (A.13)

where

(ATA)−1AT =







−0.0857 0.3429 0.4857 0.3429 −0.0857
−0.2000 −0.1000 0.0000 0.1000 0.2000

0.1429 −0.0714 −0.1429 −0.0714 0.1429






. (A.14)



178

Appendix B

Shear Effects on Sound Rays

In the presence of shear, the acoustic propagation paths of sound rays traveling in

opposite directions between two points, do not overlap. This lack of reciprocity may

result in an erroneous estimate of path-averaged velocity. In order to estimate the

magnitude of this error, we consider changes in acoustic travel time and separation

between sound rays traveling in opposite directions.

Consider vertical shear σ such that the horizontal fluid velocity along an arbi-

trary x-axis is

u(z) = u◦ + σz. (B.1)

Without loss of generality, we let u◦ = 0, and position two acoustic elements at

x = 0 and x = `, on the horizontal plane z = 0 (Fig. B). Acoustic rays, propagating

from x = 0 to x = `, bend downward if σ > 0 and upward if σ < 0.

In a time-independent medium, the acoustic frequency, ω = 2πf , remains con-

stant along each ray:

ω = k◦(c◦ + u◦ cosχ◦) = k[c(z) + u(z) cosχ] (B.2)

where k = 2π/λ is the wavenumber, c(z) is the vertical sound speed profile, χ

is the grazing angle that the ray forms with a horizontal plane, and u(z) cosχ

is the component of flow velocity parallel to the acoustic propagation path. By

continuity, the horizontal component of the wavenumber vector must also remain
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Figure B.1: Ray bending in shear flow. In the presence of shear, sound rays
propagating in opposite directions between two points do not follow overlapping
trajectories. This may introduce an error in current measurements that rely on
reciprocal travel time difference. This figure defines the variables used to obtain ap-
proximate expressions for change in acoustic travel time and maximum separation
between opposite sound rays.

constant:

k◦ cosχ◦ = k cosχ. (B.3)

Eliminating k between (B.2) and (B.3), we obtain

cosχ

cosχ◦

=
c(z) + u(z) cosχ

c◦ + u◦ cosχ◦

, (B.4)

which is Snell’s law of refraction, modified by the presence of shear.

If the sound speed profile is constant, c(z) = c◦, then the shear will affect the

total travel time Σt, but not the travel time difference ∆t of two acoustic signals

propagating in opposite directions. The change in total travel time due to the

presence of shear, and the maximum separation between opposite sound rays, are

determined using (B.1) and (B.4).

In order for sound rays to intersect the x-axis at x = `, they must leave x = 0
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with a grazing angle of χ◦. The turning depth, χ = 0, occurs at the point of

maximum separation from the x-axis, z = η/2 and x = `/2. The horizontal

distance to the turning depth is

`

2
=
∫ `/2

0

dr =
∫ η/2

0

dz

tanχ
. (B.5)

We assume σ`� 2c, to solve for range,

` =
2c◦
σ

ln(secχ◦ + tanχ◦) ≈
2c◦χ◦

σ
, (B.6)

and initial grazing angle,

χ◦ ≈
σ`

2c◦
. (B.7)

Referring to Fig. B, we note that an element of length ds along the propagation

path is equal to dz/ sinχ. Therefore, the travel time to z = η/2 is

Σt

4
=
∫ η/2

0

dz

[c◦ + u(z) cosχ] sinχ
. (B.8)

We solve for total travel time,

Σt =
2

σ
tanχ◦ +

`

c◦
cosχ◦ ≈

2`

c◦
− σ2`3

24c3
◦

. (B.9)

and note that vertical shear σ decreases the total travel time by ≈ σ2`3/24c3
◦
.

Finally, we obtain an expression for the maximum separation between sound rays

propagating in opposite directions:

η =
2c◦
σ

(secχ◦ − 1) ≈ σ`2

4c◦
. (B.10)



181

Appendix C

Path-Integral Approximation for

a Long Baseline

The left-hand-side of (5.29) can be written

A(k1, k3) =

∞
∫

−∞

sin2(αk2 + β)

(αk2 + β)2
ϕθ(k) dk2, (C.1)

where

α =
`

2
sin θ (C.2)

and

β =
`k1

2
cos θ. (C.3)

We note that sin2 x/x2 has a main lobe of width 2π, centered at x = 0, and

enclosing 90% of the total area under the curve. For (C.1), the main lobe is

centered at k2 = −k1 cot θ and has width 4π/` sin θ. If the width of this lobe is

small compared with the wavenumber range of interest, that is k1` sin θ � 4π,

then

ϕθ(k) ≈ ϕθ(k)|k2=−k1 cot θ = ϕθ(k1,−k1 cot θ, k3), (C.4)
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and

A(k1, k3) ≈ ϕθ(k1,−k1 cot θ, k3)

∞
∫

−∞

sin2(αk2 + β)

(αk2 + β)2
dk2

=
2π

` sin θ
ϕθ(k1,−k1 cot θ, k3). (C.5)


